Optimised Graph Convolution for calorimetry event classification

Confrence on Computing in High Energy and Nuclear Physics

Matthieu Melennec¹

Frédéric Magniette¹ Shamik Ghosh¹

¹Laboratoire Leprince-Ringuet, Ecole Polytechnique, Institut Polytechnique de Paris, CNRS Nucléaire & Particules, Palaiseau, France

22nd of October, 2024

K ロ ▶ K 何 ▶ K 로 ▶ K 로 ▶ 그리도 19 Q @

HL-LHC and CMS HGCAL

High-Luminosity LHC (HL-LHC):

- ▶ More rare events (Higgs production and BSM physics)
- ▶ Increased reconstruction complexity (up to 200 Pile-up events)
- **CMS High Granularity Calorimeter** (HGCAL):
	- ▶ New CMS end-cap sampling calorimeter
	- ▶ High granularity: 6M channels on 47 layers
	- ▶ Si and Scintillator based

Point cloud data:

▶ Points $P_i \in \mathbb{R}^{k \geq 3}$: Euclidean coordinates + $(k-3)$ "colours"

 \blacktriangleright Unordered, sparse and with variable size

HGCAL output: Point clouds

- \blacktriangleright Hits: 3D points with energy measurement and timing
- \blacktriangleright Variable granularity
- \blacktriangleright Graph convolution promising approach

CNNs and Point Cloud Data

Convolutional Neural Networks:

- \blacktriangleright Excellent at classification and segmentation tasks
- ▶ Identifies geometric patterns

- How to generalise the success of CNNs to point-cloud data?
	- ▶ Graph convolution

4 0 8 4

H 트 K H 트 K 트 트 K 9 Q O

Message Passing Graph Convolution

Aggregator: symmetric and normalised (e.g. mean/max) combines all messages

$$
x_v^{(t+1)} = \gamma_{\theta_{\gamma}}\left(x_v^{(t)}, \underset{w \in \mathcal{N}(v)}{\square} \phi_{\theta_{\phi}}\left(x_v^{(t)}, x_w^{(t)}, e_{vw}\right)\right)
$$

Update function: combine messages with own features

Formalism:

Message function: collects neighbour features

Gilmer et al., Neural message passing for quantum chemistry, 2017

Aim: Coarsen graph to increase the range of the convolution

- 1. Selection (or clustering): Select which nodes to pool (e.g. by selecting edges to "collapse")
- 2. Reduction: Combine features of pooled nodes (using max or sum pooling)
- 3. Connection: update adjacencies (inherited or dynamic)

Grattarola et al. Understanding Pooling in Graph Neural Networks, 2024

Optimal Graph Convolution for particle IDentification Efficient algorithms for event reconstruction in particle detectors

- ▶ Reduction of graph construction complexity
- ▶ Segmented implementation
- ▶ Optimising the network design and adapt it to the electronic implementation (FPGA...)
- ▶ Multi-task (Online and Offline CMS HGCAL reconstruction, Hyper-Kamiokande DSNB discrimination)

Funded by the Agence Nationale de la Recherche (ANR), ANR-21-CE31-0030

▶ 제품 ▶ 제품 ▶ (품)님 19 9.0

Simulate HGCAL-like calorimeter using GEANT4

- \blacktriangleright ~ 10⁵ Si sensors
- ▶ 26 ECAL layers with Pb absorbers
- ▶ 24 HCAL layers with stainless steel absorbers

 Ω

INSTITUT
POLYTECHNIQUI

Simulated e $^{-}/\gamma$, π^{+} and μ^{-} events in the detector

- ▶ Energies 10 GeV to 100 GeV
- ▶ Each hit corresponds to the energy deposited in the detector in the corresponding sensor

4 0 F

 2980

Graph Generation

- ▶ Build arbitrary edges between sparse, multi-dimensional data-points
- ▶ Typically: k nearest neighbours (KNN)
	- **Ensures geometric locality**
	- ▶ Complexity: worst-case = mean = $\mathcal{O}(n^2)$

Particle detectors: Static and known geometry

Pre-compute proximities of sensors

▶ For each sensor, order its neighbours by increasing distance in a "proximity table" (PT)

▶ Arbitrary choice of metric used for ordering (e.g. Euclidean, adding a radiality term, correlation...), but no correlation on model performance in our study: take Euclidean distance

PT-KNN: iterate over rows until k neighbours found

PTs reduce the mean complexity of KNN from

 $\mathcal{O}(n^2)$ $\overline{\mathbf{t}}$ to $(\log^2(n))$

Reducing PTs

BENSTITUT

Proximity Tables: $10^5 \times 10^5$ entries

- ▶ Can cut PT to remove rarely explored columns
- ▶ Allows FPGA implementation

K ロ ▶ K 母 ▶ K ヨ ▶ K ヨ ▶ - ヨ(ヨ) 900

Resulting Graphs

We obtain graphs:

- **Nodes** v:
	- \blacktriangleright Sensor energy x_v Position \vec{u}
- \blacktriangleright Graph-level features (pid, energy...)

Radial symmetry in detector \Rightarrow Positions \vec{u}_v carried as "hidden features", not used in convolution

Edges e_{vw} :

- \blacktriangleright End nodes v, w
- **►** Length $d(v, w) = ||\vec{u}_v \vec{u}_w||$

Message Passing Convolution

$$
x_v^{(t+1)} = \underset{w \in \tilde{\mathcal{N}}(v)}{\square} \text{Leaky-ReLU}\left(\Phi_\theta\left[x_v^{(t)}\ x_w^{(t)}\ d(v,w)\right]\right)
$$

- \blacktriangleright Message function Φ_{θ} : Linear combination with trainable weights θ $\Phi_\theta \in \mathbb{R}^{2n \times (2n+1)}$, i.e. doubles number of features
- ▶ Aggregator \Box : Feature-wise pooling (classification: max, regression: mean)
- \blacktriangleright Update function γ : Self-loop (i.e. aggregate with message from itself)

Pooling

- 1. Selection with Treclus: Collapse all edges shorter than a threshold ε
	- \triangleright Choice of ε using the number of resulting nodes: Convolution doubles n $^{\circ}$ features \Rightarrow pooling halves n $^{\circ}$ nodes
- 2. **Reduction**: Combine nodes v in cluster C
	- **►** Feature-wise pool $\{x_v\}_{v \in C}$ (classification: max, regression: sum)
	- ▶ Choose at random a destination node in $\{\vec{u}_v\}_{v \in C}$

3. Connection: Inherited adjacency from nodes $v \in \mathcal{C}$, $w \in \mathcal{C}'$ neighbours $\Rightarrow \mathcal{C}, \mathcal{C}'$ neighbours

Example Pooling

M. Melennec CHEP 2024 18/ 27

Readout

Readout problematic:

- ▶ Need to flatten graph structure as input for an MLP
- \triangleright Can be tricky to keep graph structural information
	- ▶ No order for nodes
	- ▶ No order for edges
- \blacktriangleright Need a consistent approach

Random order of readout unintelligible \rightarrow

Readout

- ▶ Known geometry: embed graph back into its geometry
- ▶ Detector sliced up in readout regions that respect rotational symmetry
- ▶ Pool features within the same region (max or sum)
- **Elatten in consistent order**

Multi-Layer Perceptron

- ▶ Fully connected MLP
- \blacktriangleright 5-6 hidden layers
- ▶ Leaky ReLU activation
- ▶ Output size: 3 (PID) or 1 (Energy regression)

 $2Q$

医重新的

Full Pipeline

Pipelines have 3 CP layers, 6 hidden MLP layers $\sim 10^4$ parameters Readout granularity adapted to task

4 D F

つくい

Particle ID Performance

- ▶ Classify $e^-/\gamma, \mu, \pi$ with $E \in [10, 100]$ GeV
- \blacktriangleright Balanced set of 10^5 events
- ▶ State of the art performance
- **Some difficult PID tasks**

Energy Regression

- ▶ Trained on 2×10^6 graphs (75% training)
- ▶ Regression performance conform to detector
- ► e^-/γ better precision that π : different sampling fractions and physics
- ▶ Asymmetry of tails: detector properties

4 D F

→ < 3H \rightarrow $2Q$

Energy Resolution

Energy resolution given by:

- ▶ Graph convolution powerful tool for HEP data
- \blacktriangleright Recover state of the art results
- \blacktriangleright Algorithmic optimisation allows online implementation (e.g. FPGAs)

Perspectives:

- ▶ More difficult PIDs
- ▶ Bigger energy range
- ▶ Pile-up Segmentation
- ▶ Extension to other detectors (e.g. diffuse supernovae background in Hyper-Kamiokande)

Thank you for listening... Any questions?

通信 めなべ

Backups

E **D**

イロト イ部 トイヨ トイ

重目 のへぐ

Image Convolution

- ▶ Apply kernel on image (like the convolution filter)
- ▶ Kernel (k_{ii}) is learnable
- \blacktriangleright Filter is shared over the whole picture
- ▶ Idea : creating maps of features (one kernel per feature)

Image Pooling

 \blacktriangleright Reduce the dimensionality of the feature maps

- ▶ Move to higher level of abstraction
- ▶ Classification: max pool; Regression: mean pool

つのへ

Convolutional Network

Network structure :

- ▶ Alternance of convolution & pooling
- ▶ Flattering (sometimes called readout)
- ▶ Multi-layer perceptron

4 D F

 290

How Does It Work?

- ▶ Feature maps aggregates more and more details to converges to high level recognition patterns
- ▶ Flattened high-level feature map is input for multi-layer perceptron

- \blacktriangleright The two operations derive naturally from local space:
	- $▶$ Euclidean space \Rightarrow Translation invariance; Respected by convolution
	- ▶ Scale-separability \Rightarrow alternated convolution and downsampling
- ▶ Dream complexity
	- \triangleright $\mathcal{O}(1)$ parameters par filter (independent of image size)
	- \triangleright $\mathcal{O}(n)$ complexity in time per layer (*n* pixels)

Generalisation of CNN

$$
\blacktriangleright
$$
 Message: $\phi_{\theta_{\phi}}(x_v, x_w, e_{vw}) = x_w * \theta_{\phi_w}$

- \blacktriangleright Aggregator: $□ = ∑$
- ▶ Every node is self-looped:

$$
x_v^{(t+1)} = \sum_{w \in \tilde{\mathcal{N}}(v)} x_w * \theta_{\phi_w}
$$

with $\tilde{\mathcal{N}}(v)$ a regular structure containing $\mathcal{N}(v)$ and v

Pooling

- 1. Selection with Treclus: Collapse all edges shorter than a threshold ε
	- \blacktriangleright Choice of ε using the number of resulting nodes: Convolution doubles n $^{\circ}$ features \Rightarrow pooling halves n $^{\circ}$ nodes
	- \blacktriangleright Make a random matching: avoid chain clusters
	- ▶ Treclus cannot collapse all short edges: Call multiple times

4 0 F

 $= \Omega Q$

Chain clusters

M. Melennec [GCNNs for Calorimetry](#page-0-0) CHEP 2024 36/ 27

D

津信 めなめ

어때 동시계를

∢ ロ ▶ ∢ 伊