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HL-LHC and CMS HGCAL

High-Luminosity LHC (HL-LHC):

▶ More rare events (Higgs
production and BSM physics)

▶ Increased reconstruction
complexity (up to 200 Pile-up
events)

▶ CMS High Granularity Calorimeter
(HGCAL):

▶ New CMS end-cap sampling
calorimeter

▶ High granularity: 6M channels on 47
layers

▶ Si and Scintillator based
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Point Cloud Data in HEP

Point cloud data:

▶ Points Pi ∈ Rk≥3: Euclidean coordinates + (k − 3) “colours”

▶ Unordered, sparse and with variable size

HGCAL output: Point clouds

▶ Hits: 3D points with energy
measurement and timing

▶ Variable granularity

▶ Graph convolution promising
approach
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CNNs and Point Cloud Data

Convolutional Neural Networks:

▶ Excellent at classification
and segmentation tasks

▶ Identifies geometric
patterns

How to generalise the success of CNNs
to point-cloud data?

▶ Graph convolution

M. Melennec GCNNs for Calorimetry CHEP 2024 4/ 27



Message Passing Graph Convolution

Formalism:
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Message function:
collects neighbour features

Aggregator: symmetric and
normalised (e.g. mean/max)
combines all messages

Update function:
combine messages with
own features

Gilmer et al., Neural message
passing for quantum chemistry,

2017
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Graph Pooling

Aim: Coarsen graph to increase the range of the convolution

1. Selection (or clustering): Select which nodes to pool (e.g. by
selecting edges to “collapse”)

2. Reduction: Combine features of pooled nodes (using max or
sum pooling)

3. Connection: update adjacencies (inherited or dynamic)

Grattarola et al. Understanding
Pooling in Graph Neural

Networks, 2024
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OGCID Project

Optimal Graph Convolution for particle IDentification
Efficient algorithms for event reconstruction in particle detectors

▶ Reduction of graph construction complexity

▶ Segmented implementation

▶ Optimising the network design and adapt it to the electronic
implementation (FPGA...)

▶ Multi-task (Online and Offline CMS HGCAL reconstruction,
Hyper-Kamiokande DSNB discrimination)

Funded by the Agence Nationale de la Recherche (ANR), ANR-21-CE31-0030
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HGCAL-like simulation

Simulate HGCAL-like calorimeter using GEANT4

▶ ∼ 105 Si sensors

▶ 26 ECAL layers with Pb absorbers

▶ 24 HCAL layers with stainless steel absorbers
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Simulation Samples

Simulated e−/γ, π+ and µ− events in the detector

▶ Energies 10 GeV to 100 GeV

▶ Each hit corresponds to the energy deposited in the detector
in the corresponding sensor

e−/γ event π event µ event
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GCNN Structure

Unordered
pointcloud

O
bjective

Graph generation

Graph convolution

Graph pooling

Repeated layers

Graph readout
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Graph Generation

▶ Build arbitrary edges between sparse, multi-dimensional
data-points

▶ Typically: k nearest neighbours (KNN)
▶ Ensures geometric locality
▶ Complexity: worst-case = mean = O

(
n2
)
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Proximity Tables

Particle detectors: Static and known geometry

Pre-compute proximities of sensors

▶ For each sensor, order its neighbours by increasing distance in
a “proximity table” (PT)

▶ Arbitrary choice of metric used for ordering (e.g. Euclidean,
adding a radiality term, correlation...), but no correlation on
model performance in our study: take Euclidean distance
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Proximity Table KNN

PT-KNN: iterate over rows until k neighbours found

▶ Worst-case
complexity: O

(
n2
)

▶ Reduces best case
complexity to O(kn)

▶ On average,

⟨clast⟩ = O
(
log2(n)

n

)
PTs reduce the mean complexity of KNN from

O(n2) to O
(
log2(n)

)
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Reducing PTs

Proximity Tables: 105 × 105 entries

▶ Can cut PT to remove rarely explored columns

▶ Allows FPGA implementation
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Resulting Graphs

We obtain graphs:
▶ Nodes v :

▶ Sensor energy xv
▶ Position u⃗v

▶ Edges evw :

▶ End nodes v ,w
▶ Length d(v ,w) = ∥u⃗v − u⃗w∥

▶ Graph-level features (pid,
energy...)

Radial symmetry in detector ⇒
Positions u⃗v carried as “hidden
features”, not used in convolution
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Message Passing Convolution
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])
▶ Message function Φθ: Linear combination with trainable

weights θ
Φθ ∈ R2n×(2n+1), i.e. doubles number of features

▶ Aggregator □: Feature-wise pooling (classification: max,
regression: mean)

▶ Update function γ: Self-loop (i.e. aggregate with message
from itself)

M. Melennec GCNNs for Calorimetry CHEP 2024 16/ 27



Pooling

1. Selection with Treclus: Collapse all edges shorter than a
threshold ε

▶ Choice of ε using the number of resulting nodes: Convolution
doubles n◦ features ⇒ pooling halves n◦ nodes

2. Reduction: Combine nodes v in cluster C
▶ Feature-wise pool {xv}v∈C (classification: max, regression:

sum)
▶ Choose at random a destination node in {u⃗v}v∈C

Mean pool

Sum pool

3. Connection: Inherited adjacency from nodes
v ∈ C,w ∈ C′ neighbours ⇒ C, C′ neighbours
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Example Pooling

Original graph

Pooling step 2

Pooling step 1

Pooling step 3
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Readout

Readout problematic:

▶ Need to flatten graph structure as input for an MLP

▶ Can be tricky to keep graph structural information

▶ No order for nodes
▶ No order for edges

▶ Need a consistent approach

Random order of readout unintelligible →
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Readout

▶ Known geometry: embed graph back into its geometry

▶ Detector sliced up in readout regions that respect rotational
symmetry

▶ Pool features within the same region (max or sum)

▶ Flatten in consistent order
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Multi-Layer Perceptron

▶ Fully connected MLP

▶ 5-6 hidden layers

▶ Leaky ReLU activation

▶ Output size: 3 (PID) or 1
(Energy regression)
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Full Pipeline

Pipelines have 3 CP layers, 6 hidden MLP layers ∼ 104 parameters
Readout granularity adapted to task
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Particle ID Performance

▶ Classify e−/γ, µ, π with
E ∈ [10, 100] GeV

▶ Balanced set of 105 events

▶ State of the art performance

▶ Some difficult PID tasks

e− induced Hadronic jet Early showering π
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Energy Regression

▶ Trained on 2× 106 graphs (75% training)

▶ Regression performance conform to detector

▶ e−/γ better precision that π: different sampling fractions and
physics

▶ Asymmetry of tails: detector properties
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Energy Resolution

Energy resolution given by:
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Stochastic fluctuations
in shower development

Noise from read-
out electronics

Systematic noise
(e.g. dark noise...)

▶ Noise not emulated:

σ

µ
∝ 1√

E
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Conclusion

▶ Graph convolution powerful tool for HEP data

▶ Recover state of the art results

▶ Algorithmic optimisation allows online implementation (e.g.
FPGAs)

Perspectives:

▶ More difficult PIDs

▶ Bigger energy range

▶ Pile-up Segmentation

▶ Extension to other detectors (e.g. diffuse supernovae
background in Hyper-Kamiokande)
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Thank you for listening...
Any questions?
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Backups
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Image Convolution

▶ Apply kernel on image (like the convolution filter)

▶ Kernel (kij) is learnable

▶ Filter is shared over the whole picture

▶ Idea : creating maps of features (one kernel per feature)
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Image Pooling

▶ Reduce the dimensionality of the feature maps

▶ Move to higher level of abstraction

▶ Classification: max pool; Regression: mean pool
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Convolutional Network

Network structure :

▶ Alternance of convolution & pooling

▶ Flattering (sometimes called readout)

▶ Multi-layer perceptron
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How Does It Work?

▶ Feature maps aggregates more and more details to converges
to high level recognition patterns

▶ Flattened high-level feature map is input for multi-layer
perceptron
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Why Does It Work?

▶ The two operations derive naturally from local space:

▶ Euclidean space ⇒ Translation invariance; Respected by
convolution

▶ Scale-separability ⇒ alternated convolution and downsampling

▶ Dream complexity

▶ O(1) parameters par filter (independent of image size)
▶ O(n) complexity in time per layer (n pixels)
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Generalisation of CNN

▶ Message: ϕθϕ (xv , xw , evw ) = xw ∗ θϕw
▶ Aggregator: □ = Σ

▶ Every node is self-looped:

x
(t+1)
v =

∑
w∈Ñ (v)

xw ∗ θϕw

with Ñ (v) a regular structure containing N (v) and v
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Pooling

1. Selection with Treclus: Collapse all edges shorter than a
threshold ε

▶ Choice of ε using the number of resulting nodes: Convolution
doubles n◦ features ⇒ pooling halves n◦ nodes

▶ Make a random matching:
avoid chain clusters

▶ Treclus cannot collapse all
short edges: Call multiple
times
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Chain clusters
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