Optimised Graph Convolution for calorimetry event classification

Confrence on Computing in High Energy and Nuclear Physics

Matthieu Melennec¹

Frédéric Magniette¹ Shamik Ghosh¹

¹Laboratoire Leprince-Ringuet, Ecole Polytechnique, Institut Polytechnique de Paris, CNRS Nucléaire & Particules, Palaiseau, France

22nd of October, 2024

▲□▶ ▲□▶ ▲□▶ ▲□▶ ヨ□ のへで

HL-LHC and CMS HGCAL

High-Luminosity LHC (HL-LHC):

- More rare events (Higgs production and BSM physics)
- Increased reconstruction complexity (up to 200 Pile-up events)
- CMS High Granularity Calorimeter (HGCAL):
 - New CMS end-cap sampling calorimeter
 - High granularity: 6M channels on 47 layers
 - Si and Scintillator based

Point Cloud Data in HEP

Point cloud data:

- ▶ Points $P_i \in \mathbb{R}^{k \ge 3}$: Euclidean coordinates + (k 3) "colours"
- ▶ Unordered, sparse and with variable size

HGCAL output: Point clouds

- Hits: 3D points with energy measurement and timing
- Variable granularity
- Graph convolution promising approach

CNNs and Point Cloud Data

Convolutional Neural Networks:

- Excellent at classification and segmentation tasks
- Identifies geometric patterns

How to generalise the success of CNNs to point-cloud data?

► Graph convolution

Message Passing Graph Convolution

Aggregator: symmetric and normalised (e.g. mean/max) combines all messages

$$x_{v}^{(t+1)} = \gamma_{\theta_{\gamma}} \left(x_{v}^{(t)}, \underset{w \in \mathcal{N}(v)}{\Box} \phi_{\theta_{\phi}} \left(x_{v}^{(t)}, x_{w}^{(t)}, e_{vw} \right) \right)$$

Update function: combine messages with own features

Formalism:

Message function: collects neighbour features

Gilmer et al., Neural message passing for quantum chemistry, 2017

GCNNs for Calorimetry

Aim: Coarsen graph to increase the range of the convolution

- 1. **Selection** (or clustering): Select which nodes to pool (e.g. by selecting edges to "collapse")
- 2. **Reduction**: Combine features of pooled nodes (using max or sum pooling)
- 3. **Connection**: update adjacencies (inherited or dynamic)

Grattarola et al. Understanding Pooling in Graph Neural Networks, 2024

Optimal Graph Convolution for particle IDentification Efficient algorithms for event reconstruction in particle detectors

- Reduction of graph construction complexity
- Segmented implementation
- Optimising the network design and adapt it to the electronic implementation (FPGA...)
- Multi-task (Online and Offline CMS HGCAL reconstruction, Hyper-Kamiokande DSNB discrimination)

anr®

Funded by the Agence Nationale de la Recherche (ANR), ANR-21-CE31-0030

Simulate HGCAL-like calorimeter using GEANT4

- \blacktriangleright $\sim 10^5$ Si sensors
- ▶ 26 ECAL layers with Pb absorbers
- ▶ 24 HCAL layers with stainless steel absorbers

POLYTECHNIQU

Simulated e^ $/\gamma$, π^+ and μ^- events in the detector

- Energies 10 GeV to 100 GeV
- Each hit corresponds to the energy deposited in the detector in the corresponding sensor

• 3 • • 3

Graph Generation

- Build arbitrary edges between sparse, multi-dimensional data-points
- Typically: k nearest neighbours (KNN)
 - Ensures geometric locality
 - Complexity: worst-case = mean = $O(n^2)$

Particle detectors: Static and known geometry

Pre-compute proximities of sensors

 For each sensor, order its neighbours by increasing distance in a "proximity table" (PT)

Sensor IDs	Increasing order wrt. metric				
1	17	38		42	
2	75	16		68	
99	3	98		22	

Arbitrary choice of metric used for ordering (e.g. Euclidean, adding a radiality term, correlation...), but no correlation on model performance in our study: take Euclidean distance

PT-KNN: iterate over rows until k neighbours found

PTs reduce the mean complexity of KNN from

 $\mathcal{O}(n^2)$ to $\mathcal{O}\left(\log^2(n)\right)$

Proximity Tables: $10^5 \times 10^5$ entries

- Can cut PT to remove rarely explored columns
- Allows FPGA implementation

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Resulting Graphs

We obtain graphs:

- ► Nodes v:
 - Sensor energy x_v
 - ▶ Position \vec{u}_v
- Graph-level features (pid, energy...)

Radial symmetry in detector \Rightarrow Positions $\vec{u_v}$ carried as "hidden features", not used in convolution

• Edges e_{vw} :

- Find nodes v, w
- Length $d(v, w) = \|\vec{u}_v \vec{u}_w\|$

CHEP 2024 15/ 27

< ∃ > < ∃

Message Passing Convolution

$$x_{v}^{(t+1)} = \underset{w \in \tilde{\mathcal{N}}(v)}{\Box} \mathsf{Leaky-ReLU}\left(\Phi_{\theta}\left[x_{v}^{(t)} \ x_{w}^{(t)} \ d(v,w)\right]\right)$$

- Message function Φ_θ: Linear combination with trainable weights θ
 Φ_θ ∈ ℝ^{2n×(2n+1)}, i.e. doubles number of features
- ► Aggregator □: Feature-wise pooling (classification: max, regression: mean)
- Update function γ: Self-loop (i.e. aggregate with message from itself)

Pooling

- 1. Selection with Treclus: Collapse all edges shorter than a threshold ε
 - ► Choice of ε using the number of resulting nodes: Convolution doubles n° features ⇒ pooling halves n° nodes
- 2. **Reduction**: Combine nodes v in cluster C
 - ▶ Feature-wise pool {x_v}_{v∈C} (classification: max, regression: sum)
 - Choose at random a destination node in $\{\vec{u}_v\}_{v \in C}$

3. **Connection**: Inherited adjacency from nodes $v \in C, w \in C'$ neighbours $\Rightarrow C, C'$ neighbours

Example Pooling

CHEP 2024 18/ 27

Readout problematic:

- ▶ Need to flatten graph structure as input for an MLP
- Can be tricky to keep graph structural information
 - No order for nodes
 - No order for edges
- Need a consistent approach

Random order of readout unintelligible \rightarrow

Readout

- ▶ Known geometry: embed graph back into its geometry
- Detector sliced up in readout regions that respect rotational symmetry
- Pool features within the same region (max or sum)
- Flatten in consistent order

Multi-Layer Perceptron

- Fully connected MLP
- ▶ 5-6 hidden layers
- Leaky ReLU activation
- Output size: 3 (PID) or 1 (Energy regression)

(세종) 세종) 목

Full Pipeline

Pipelines have 3 CP layers, 6 hidden MLP layers $\sim 10^4$ parameters Readout granularity adapted to task

(▲ 문) (▲ 문

Particle ID Performance

- Classify $e^-/\gamma, \mu, \pi$ with $E \in [10, 100]$ GeV
- ▶ Balanced set of 10⁵ events
- State of the art performance
- Some difficult PID tasks

GCNNs for Calorimetry

cnrs

Energy Regression

- Trained on 2×10^6 graphs (75% training)
- Regression performance conform to detector
- ▶ e^-/γ better precision that π : different sampling fractions and physics
- Asymmetry of tails: detector properties

Energy Resolution

AND A CONSTRUCTION OF A CONSTR

Energy resolution given by:

- Graph convolution powerful tool for HEP data
- Recover state of the art results
- Algorithmic optimisation allows online implementation (e.g. FPGAs)

Perspectives:

- More difficult PIDs
- Bigger energy range
- Pile-up Segmentation
- Extension to other detectors (e.g. diffuse supernovae background in Hyper-Kamiokande)

Thank you for listening... Any questions?

• 3 • • 3

Backups

M. Melennec

GCNNs for Calorimetry

CHEP 2024 28/ 27

213 99C

Image Convolution

- Apply kernel on image (like the convolution filter)
- ▶ Kernel (k_{ij}) is learnable
- ▶ Filter is shared over the whole picture
- Idea : creating maps of features (one kernel per feature)

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ = のQQ

Image Pooling

- Reduce the dimensionality of the feature maps
- Move to higher level of abstraction
- Classification: max pool; Regression: mean pool

Convolutional Network

Network structure :

- Alternance of convolution & pooling
- Flattering (sometimes called readout)
- Multi-layer perceptron

How Does It Work?

- Feature maps aggregates more and more details to converges to high level recognition patterns
- Flattened high-level feature map is input for multi-layer perceptron

(3)

- ▶ The two operations derive naturally from local space:
 - ► Euclidean space ⇒ Translation invariance; Respected by convolution
 - ► Scale-separability ⇒ alternated convolution and downsampling
- Dream complexity
 - $\mathcal{O}(1)$ parameters par filter (independent of image size)
 - $\mathcal{O}(n)$ complexity in time per layer (*n* pixels)

Generalisation of CNN

• Message:
$$\phi_{\theta_{\phi}}(x_v, x_w, e_{vw}) = x_w * \theta_{\phi_w}$$

- Aggregator: $\Box = \Sigma$
- Every node is self-looped:

$$x_{v}^{(t+1)} = \sum_{w \in \tilde{\mathcal{N}}(v)} x_{w} * \theta_{\phi_{w}}$$

with $\tilde{\mathcal{N}}(v)$ a regular structure containing $\mathcal{N}(v)$ and v

Pooling

- 1. Selection with Treclus: Collapse all edges shorter than a threshold ε
 - ▶ Choice of ε using the number of resulting nodes: Convolution doubles n° features \Rightarrow pooling halves n° nodes
 - Make a random matching: avoid chain clusters
 - Treclus cannot collapse all short edges: Call multiple times

= 990

Chain clusters

CHEP 2024 36/27

▶ ★ E ▶ ★ E ▶ E = 9QQ