
pip install ROOT
Experiences making a complex multi-language package

accessible for Python users

Vincenzo Eduardo Padulano1, Jonas Rembser1

[1] CERN, EP-SFT
21.10.2024, CHEP ‘24, Kraków, Poland

Vincenzo Eduardo Padulano (CERN, EP-SFT). CHEP 2024, Kraków, Poland.

Outline

▶ Python packaging ecosystem
▶ pip install ROOT

2

Python packaging ecosystem

Vincenzo Eduardo Padulano (CERN, EP-SFT). CHEP 2024, Kraków, Poland.

Python packaging

▶ Python Packaging Authority (PyPA)
● Core working group for projects

concerned with Python packaging

▶ Python packaging is a vast subject

● PyPA’s overview

4

Python Packages, 2023. Tomas Beuzen, Tiffany Timbers

https://www.pypa.io/en/latest/
https://packaging.python.org/en/latest/overview/
https://py-pkgs.org/04-package-structure.html#pkg-cycle-fig

Vincenzo Eduardo Padulano (CERN, EP-SFT). CHEP 2024, Kraków, Poland.

Python packaging

Three categories of distribution:

▶ Share one (or more) Python scripts
▶ sdist: source code installable via a

backend
▶ wheel: binary compressed archive

5

“In fact, Python’s package installer, pip, always prefers
wheels because installation is always faster, so even

pure-Python packages work better with wheels.”
PyPA. Overview of Python Packaging

PyPA. Overview of Python Packaging

https://packaging.python.org/en/latest/overview/#python-binary-distributions
https://packaging.python.org/en/latest/overview/#id2

Vincenzo Eduardo Padulano (CERN, EP-SFT). CHEP 2024, Kraków, Poland.

Python package build backends

6

Generic

Support package building for many
programming languages

Examples: Anaconda, Spack

Full flexibility in dependency
management

Enable building complex software stacks
in one environment

The same software provides package
manager and build backend

Python-focused

Specialised for building Python packages

Examples: setuptools, poetry, hatchling

Some emphasise integration with C, C++
code in the package

Examples: scikit-build-core,
py-build-cmake, meson-python

Build backends are separate from the
package manager (pip)

https://www.anaconda.com/
https://spack.readthedocs.io/en/latest/
https://setuptools.pypa.io/en/latest/
https://python-poetry.org/
https://hatch.pypa.io/latest/
https://scikit-build-core.readthedocs.io/en/latest/
https://github.com/tttapa/py-build-cmake
https://meson-python.readthedocs.io/en/stable/index.html

pip install ROOT

Vincenzo Eduardo Padulano (CERN, EP-SFT). CHEP 2024, Kraków, Poland.

The ROOT (Python) package
▶ ROOT: storage, I/O, processing, scientific analysis of

structured data
▶ EBs data stored in ROOT format
▶ Many distribution channels

● CVMFS, conda, system package managers (Linux, MacOS), official
docker images, prebuilt binaries (Linux, MacOS, Windows), Snap.

▶ Missing distribution via pip
● Makes the package more easily obtainable for Python users

● Makes integration with downstream Python packages smoother

8

https://root.cern/install/

Vincenzo Eduardo Padulano (CERN, EP-SFT). CHEP 2024, Kraków, Poland.

Seeing it in action

9

Working ROOT installation with pip (1.5x video speedup)

https://docs.google.com/file/d/1TiVaf0tx160gbS8YOw6FEjXg5YL4jONA/preview

Vincenzo Eduardo Padulano (CERN, EP-SFT). CHEP 2024, Kraków, Poland.

Seeing it in action

10

pip install ROOT -i https://root-experimental-python-wheels.web.cern.ch

Vincenzo Eduardo Padulano (CERN, EP-SFT). CHEP 2024, Kraków, Poland.

The ROOT wheels

▶ ROOT is published as a wheel
● One wheel per supported Python version (3.8+)

● For now, only support all Linux distributions (x86_64)

▶ The build backend (for now) is setuptools
▶ The wheels are built using two excellent tools

● cibuildwheel

● manylinux container image

11

https://cibuildwheel.pypa.io/en/stable/
https://github.com/pypa/manylinux

Vincenzo Eduardo Padulano (CERN, EP-SFT). CHEP 2024, Kraków, Poland.

The ROOT wheels

▶ cibuildwheel
● CI job orchestration

● Automatic process to build wheel

● Includes options to run tests

▶ manylinux
● Portable Linux build distributions (PEP513)

● Defines a minimal image with core set of dependencies (like conda)
◼ glibc + few others

● ROOT wheel complies with manylinux_2_28_x86_64 (PEP600)

12

Full compatibility and
portability across Linux

distributions

https://cibuildwheel.pypa.io/en/stable/
https://github.com/pypa/manylinux
https://peps.python.org/pep-0513/
https://peps.python.org/pep-0600/

Vincenzo Eduardo Padulano (CERN, EP-SFT). CHEP 2024, Kraków, Poland.

Wheel work in progress

▶ WIP at https://github.com/root-project/root/pull/16669

▶ Few important ingredients
● Proper management of RPATH variable aligned with “standard” Python

venv directory layout

● Similarly, install ROOT modules and libraries where they are expected

▶ Introducing changes that benefit the whole ROOT build system

▶ Currently provide only few components, to try things out
● cling, Core libraries, I/O, RDataFrame, RooFit

▶ Showcase CLI executables with root

13

https://github.com/root-project/root/pull/16669

Vincenzo Eduardo Padulano (CERN, EP-SFT). CHEP 2024, Kraków, Poland.

ROOT cli executables

14

Vincenzo Eduardo Padulano (CERN, EP-SFT). CHEP 2024, Kraków, Poland.

ROOT cli executables

15

pip install ROOT provides the
C++ CLI

Vincenzo Eduardo Padulano (CERN, EP-SFT). CHEP 2024, Kraków, Poland.

A more complete example
Analysis grand challenge benchmark with CMS OpenData

16

https://github.com/root-project/analysis-grand-challenge
https://docs.google.com/file/d/1MWbgkVaJ9TIsJfUBxSZt5Q9-OU6Dl91L/preview

Vincenzo Eduardo Padulano (CERN, EP-SFT). CHEP 2024, Kraków, Poland.

A more complete example
Analysis grand challenge benchmark with CMS OpenData

17

https://github.com/root-project/analysis-grand-challenge

Vincenzo Eduardo Padulano (CERN, EP-SFT). CHEP 2024, Kraków, Poland.

Managing external dependencies

▶ Scientific packages often have non-trivial dependencies

▶ For this purpose, ROOT benefits a lot from conda

▶ pip build backends do not support external dependencies
● This is a known and discussed limitation (PEP725, 1, 2, 3)

▶ What to do in the meanwhile?

18

https://packaging.python.org/en/latest/guides/installing-scientific-packages/
https://peps.python.org/pep-0725/
https://discuss.python.org/t/pep-725-specifying-external-dependencies-in-pyproject-toml/31888
https://discuss.python.org/t/drawing-a-line-to-the-scope-of-python-packaging
https://discuss.python.org/t/packaging-complex-software-in-a-portable-way/31975

Vincenzo Eduardo Padulano (CERN, EP-SFT). CHEP 2024, Kraków, Poland.

Managing external dependencies

Different strategies can be adopted:

▶ Bundling external dependency in library (quite common)

▶ Load libraries from other pip-installable dependencies (e.g.
xrootd, tbb) (challenging)

▶ Expect the dependency in the system, fail graciously otherwise

● Inviting the user to follow installation instructions

19

https://pytorch.org/get-started/locally/#with-cuda-1
https://discuss.python.org/t/wheel-depending-on-shared-library-from-another-wheel/26456

Vincenzo Eduardo Padulano (CERN, EP-SFT). CHEP 2024, Kraków, Poland.

Gracious failure mechanism

20

>>> import ROOT
ERROR in cling::CIFactory::createCI(): cannot extract standard
library include paths!
Invoking:
 LC_ALL=C c++ -xc++ -E -v /dev/null 2>&1 | sed -n -e
'/^.include/,${' -e '/^ \/.*++/p' -e '}'
Results was:
With exit code 0
input_line_1:1:10: fatal error: 'new' file not found
#include <new>
 ^~~~~
Warning in cling::IncrementalParser::CheckABICompatibility():
 Failed to extract C++ standard library version.
input_line_4:36:10: fatal error: 'cassert' file not found
#include <cassert>
 ^~~~~~~~~
input_line_9:1:10: error: 'iostream' file not found with <angled>
include; use "quotes" instead
#include <iostream>
 ^~~~~~~~~~
 "iostream"
IncrementalExecutor::executeFunction: symbol
'_ZN5cling7runtime6gClingE' unresolved while linking [cling
interface function]!
You are probably missing the definition of cling::runtime::gCling
Maybe you need to load the corresponding shared library?
 *** Break *** segmentation violation
 Generating stack trace…
[...]

>>> import ROOT
Traceback (most recent call last):
 File "/myenv/lib/python3.12/site-packages/ROOT/__init__.py", line 22,
in <module>

subprocess.run(cmd, env=env, check=True,
 File "/usr/local/lib/python3.12/subprocess.py", line 548, in run

with Popen(*popenargs, **kwargs) as process:
 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
 File "/usr/local/lib/python3.12/subprocess.py", line 1026, in __init__

self._execute_child(args, executable, preexec_fn, close_fds,
 File "/usr/local/lib/python3.12/subprocess.py", line 1955, in
_execute_child

raise child_exception_type(errno_num, err_msg, err_filename)
FileNotFoundError: [Errno 2] No such file or directory: 'c++'

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/myenv/lib/python3.12/site-packages/ROOT/__init__.py", line 30,
in <module>

raise ImportError(textwrap.fill(msg, width=80)) from e
ImportError: Could not find a C++ compiler when importing ROOT. Make sure
a C++ compiler as well as the C++ standard libraries are installed. For
example, run `[apt,dnf] install g++` or follow similar instructions for
your distribution. For more info, visit
https://root.cern/install/dependencies

`docker run python:3.12-slim` (~45MB)Without With

https://github.com/docker-library/docs/tree/master/python#pythonversion-slim

Vincenzo Eduardo Padulano (CERN, EP-SFT). CHEP 2024, Kraków, Poland.

Gracious failure mechanism

21

>>> import ROOT
ERROR in cling::CIFactory::createCI(): cannot extract standard
library include paths!
Invoking:
 LC_ALL=C c++ -xc++ -E -v /dev/null 2>&1 | sed -n -e
'/^.include/,${' -e '/^ \/.*++/p' -e '}'
Results was:
With exit code 0
input_line_1:1:10: fatal error: 'new' file not found
#include <new>
 ^~~~~
Warning in cling::IncrementalParser::CheckABICompatibility():
 Failed to extract C++ standard library version.
input_line_4:36:10: fatal error: 'cassert' file not found
#include <cassert>
 ^~~~~~~~~
input_line_9:1:10: error: 'iostream' file not found with <angled>
include; use "quotes" instead
#include <iostream>
 ^~~~~~~~~~
 "iostream"
IncrementalExecutor::executeFunction: symbol
'_ZN5cling7runtime6gClingE' unresolved while linking [cling
interface function]!
You are probably missing the definition of cling::runtime::gCling
Maybe you need to load the corresponding shared library?
 *** Break *** segmentation violation
 Generating stack trace…
[...]

>>> import ROOT
Traceback (most recent call last):
 File "/myenv/lib/python3.12/site-packages/ROOT/__init__.py", line 22,
in <module>

subprocess.run(cmd, env=env, check=True,
 File "/usr/local/lib/python3.12/subprocess.py", line 548, in run

with Popen(*popenargs, **kwargs) as process:
 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
 File "/usr/local/lib/python3.12/subprocess.py", line 1026, in __init__

self._execute_child(args, executable, preexec_fn, close_fds,
 File "/usr/local/lib/python3.12/subprocess.py", line 1955, in
_execute_child

raise child_exception_type(errno_num, err_msg, err_filename)
FileNotFoundError: [Errno 2] No such file or directory: 'c++'

The above exception was the direct cause of the following exception:

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/myenv/lib/python3.12/site-packages/ROOT/__init__.py", line 30,
in <module>

raise ImportError(textwrap.fill(msg, width=80)) from e
ImportError: Could not find a C++ compiler when importing ROOT. Make sure
a C++ compiler as well as the C++ standard libraries are installed. For
example, run `[apt,dnf] install g++` or follow similar instructions for
your distribution. For more info, visit
https://root.cern/install/dependencies

`docker run python:3.12-slim` (~45MB)Without With

Segfault, program
termination

(including exit from
Python session)

Pythonic exception
Does not interrupt

interactive flow

https://github.com/docker-library/docs/tree/master/python#pythonversion-slim

Conclusions and outlook

Vincenzo Eduardo Padulano (CERN, EP-SFT). CHEP 2024, Kraków, Poland.

Conclusions and outlook

▶ Demonstrated ROOT installation via pip
▶ Experimental wheels are provided

● Installable and working on any Linux distribution (x86_64)
● Featuring some ROOT components to try out

▶ Drastically lowered obtainability barrier for Python users
▶ Next steps:

● Run ROOT’s test suite with pip builds as part of ROOT CI
● Try more flexible build backends – scikit-build-core?
● Split in smaller wheels, e.g. root-core, root-rdf, root-roofit
● Make the pip installation robust, towards a first beta version

23

pip install ROOT -i https://root-experimental-python-wheels.web.cern.ch

Vincenzo Eduardo Padulano (CERN, EP-SFT). CHEP 2024, Kraków, Poland.

Conclusions and outlook

24

pip install ROOT -i https://root-experimental-python-wheels.web.cern.ch

Want to know more? Eager to try it out? Do you have suggestions
for improvements? Would you like to contribute?

Meet me around CHEP! And feel free to contact me at

vincenzo.eduardo.padulano@cern.ch

And of course also send us feedback on the forum!

https://root-forum.cern.ch

