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The SHiP experiment

• The Search for Hidden Particles (SHiP) experiment has been approved in March 2024, with commissioning expected in 2032.

• Designed to be the world-leading experiment for the search for feebly interacting particles (FIPs), such as dark photons (DPs), dark scalars (DSs), Heavy Neutral Leptons (HNLs) and axion-like particles
(ALPs), and other beyond Standard Model particles, using the High-Intensity ECN3 facility at CERN’s SPS.

• High intensity and zero background result in a unique and interesting mix of computing constraints and requirements

The SHiP software framework

• The SHiP software framework, FairShip, is based on the FairRoot framework, making
use of PyROOT to present a pythonic interface to users.

• Dependencies managed using ALICE’s alibuild with prebuilt packages distributed via
CVMFS
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• Framework already used in the real in world dedicated experiments (SHiP muon flux and
SHiP charm-cross section measurements), as the basis of the SND@LHC software
framework (taking data at LHC since 2022) and for its planned AdvSND upgrade

Optimisation of the muon shield

• The muon shield is critical to reaching SHiP’s physics goals

• Optimisation of muon shield in the past performed using approximate fields and Bayesian
optimisation

– 42 parameters
– Noisy, black-box optimisation
– Full simulation using Geant4 for each configuration
– 100 configurations tested in parallel

• Moving Bayesian optimisation to GPUs and redesign of optimisation workflow now allow us to
test O100 000 muon shield configurations per day

• On-the-fly calculation of field maps becomes plausible by integrating with CERN’s ROXIE
package

• Local Generative Surrogates (L-GSO) allow us to simulate fewer configurations with full sim-
ulation, drastically speeding up optimisation

• Reinforcement learning shows promise to further improve on Bayesian Optimisation and
L-GSO
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Comparison of L-GSO and reinforcement learning (π − E) approaches, from

Rejecting known knowns: Background simulation

• Full simulation available for only a small fraction of a second, but need to be confident about
background across 15 years

• Bias simulations and force specific interactions for neutrino and muon DIS allow us to reach
expected statistics >15 years

• Use Generative Adversarial Networks (GANs) to improve muon statistics
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• Work ongoing to merge events and simulate non-uniform spill time structure

• We are developing a background-tagging algorithm using a Graph Neural Network (GNN)
to tag parts of events as background while preserving high signal efficiency

Looking for known unknowns: SensCalc & EventCalc

• Direct interface with EventCalc generator to allow studying a variety of FIP channels with-
out having to implement each separately

• EventCalc is the evolution of SensCalc, an experiment-independent semi-analytical sen-
sitivity calculation tool, validated against many experiments in-house sensitivity calculations

Looking for unknown unknowns: Anomaly detection

• In order to be sensitive to unexpected signatures, we need to develop techniques to distin-
guish them from the background with minimal assumptions

• After successful proof-of-concept, we are investigating using Variational Autoencoders
(VAEs) to develop a selection for new physics signals using only our knowledge of the de-
tector backgrounds, complementary to targeted selections
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Left: Schematic of the VAE architecture; Right: Separation of signal (HNL) and background (neutrino) in the latent
space of the VAE.

Towards data taking

2025 Major technology decisions informed by simulation need to be taken

– Electronic or emulsion-based Scattering and neutrino detector (SND)
– Partially super-conducting or fully warm muon shield

2027 TDRs (including online and offline computing) to be submitted

2032 Commissioning with beam and then data taking for 15 years


