Application of linear and non-linear constraints

N a brute-force-based alignment approach for CBM
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Motivation Alignment objects )(2 Minimization Weak modes
The experiment data analysis relies on the e Rigid bodies, e.g., sensors or stations e Discrepancy between measurements and A particular challenge in alignment is the
high measurement accuracy provided by . hit predictions (according to track model) mitigation of weak modes. These correspond
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high-resolution sensors. To exploit this high translation and rotation) ) | | O changes In alignment parameters that Go
intrinsic resolution, the sensors' exact posi- * ¥~ of residuals depends on allgnment_)pa— not affect the x> value. In other words, the
tions and orientations must be known. The e Alignment parameters: rameters p and the track parameters ¢ cost function has no unique minimum.
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corrections must be found and applied. rotations matrices tracs hits
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application motivated the development of a Weak mode examples
complementary brute-force approach. Deviations of hit predictions from measurements a) and b) overall movements. c) scaling

A brute-force-based alignment approach
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e In each iteration Ap is determined within * Quadratic approximation (according to setup accuracy)
_ the parameter validity interval o e Min and max step size
refit tracks 2 e
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discarded otherwise ghommaeee W .
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The brute-force alignment procedure 2D example

L iInear constraints A non-linear constraint

Straightforward constraints Validity range Point measurement constraint

e Fixing stations: e [he setup accuracy defines a validity
Respective parameters are not included in range for each parameter
the alignment

e Reference point 7 with fixed local coordinates
with respect to a sensor or station

o All steps Aﬁ are restricted to the validity
e Setting the sum of all shifts in one range

dimension to zero:

After each iteration cycle, the constrained
parameters are simultaneously reset
around their axis

e Measured global coordinates 77 of ¥ with
measurement error o

e Parameter space is only scanned in a
narrow interval corresponding to the
validity range
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e During alignment 71,1 changes according —
to the alignment parameters of the sensor

: : Point coordinates are fixed to a measurement
¢ |n each iteration over the sensor parameters

ensure: | m — Fyopa | < 3.50

e Mitigates the weak mode of overall shifts
of the entire detector

Prealignment Advantages Next step

Using photometric survey data e |ndividual parameter treatment e \Work towards interfaces for a full alignment test chain in CBMROOT simulations

A desirable feature is to include precise e Non-linear constraints
measurement information in the alignment
process mitigate weak modes. For
example, photometric surveys deliver e Non-linearized cost function ){2
global coordinates of known points in the
detector setup.

misalignment ideal
matrices geometry

¢ |nequality constraints

alignment
matrices

e Combination of different optimization
methods

transport digitization reconstruction alignment
wtive alignment
During the brute-force-based alignment or analysis
procedure, these points can be pinned to
the respective coordinates using the point e Potentially linear runtime scaling
measurement constraint.
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