

Machine Learning Inference in Athena with ONNX <u>Attila Krasznahorkay², Beojan Stanislaus¹, Charles Leggett¹, Debottam Bakshi Gupta³, </u> Johannes Elmsheuser⁴, Julien Esseiva¹, Paolo Calafiura¹, Vakho Tsulaia¹, Xiangyang Ju¹

on behalf of the ATLAS computing activity

¹Lawrence Berkeley National Laboratory, ²University of Massachusetts Amherst, ³University of Texas at Arlington, ⁴ Brookhaven National Laboratory 27th International Conference on Computing in High Energy and Nuclear Physics (CHEP 2024)

A common interface for Machine Learning inference in Athena that are implemented by OnnxRuntime and Inference as a Service [2].

Input and output data is a *dictionary* that maps input and output names to a data object that contains the tensor shape and data. The dictionary allows dynamic number of input and output data.

Tensor data is represented by *std::variant*, allowing different data types.

Lightweight **Athena Tool**, each for a specific backend such as CPU or NVIDIA GPU, allows the

possibility that other backends can be used.

One ORT::Env as *Athena Service*, shared by all Athena Algorithms. Its functionality includes 1) logging, 2) managing thread pools for running ONNX Sessions (To-be-done), 3) managing memory allocations for ONNX models (To-be-done)

Lawrence Berkeley National Laboratory

[1]: OnnxRuntime: https://onnxruntime.ai/.

[2]: J. Duarte, et al. FPGA-accelerated machine learning inference as a service for particle physics computing, https://arxiv.org/abs/1904.08986