

dE/dx Software in the BESIII Experiment

Wenxing Fang, Weidong Li, Shengsen Sun

Institute of High Energy Physics, CAS / fangwx@ihep.ac.cn

Introduction of the BESIII experiment

- The Beijing Electron Collider II (BEPC II) is a high luminosity e⁺e⁻collider with center massenergy from 2 to 4.6 GeV [1]
 The BESIII experiment at BEPC II
- focuses on tau-charm physics.
 Such as non-perturbative QCD, exotic hadrons, and BSM [2]
 The BESIII has accumulated an unprecedented amount of data.

dE/dx simulation

- The Geant4 can not precisely simulate the deposited energy of charged particles in the thin gas
- A data-driven dE/dx simulation method is adopted
 - 1. Producing dE/dx distribution histograms for different $\beta\gamma$, θ , and charge of the track regions using real experiment data
 - 2. Performing dE/dx sampling together with the Geant4 simulation

G4Step	
Particle's βγ,θ,charge	
Sampling dE/dx	
dE/dx distribution histograms	

in different bins ($\gamma\beta$, θ ,charge)

For example, 10 billion J/psi data

dE/dx software

- The offline software system of the BESIII is called "BOSS". It consists of external libraries, core software, and the BESIII specific applications
- The particle identification (PID) is essential for the BESIII experiment. The PID for π, K, proton relies on the dE/dx and the time of flight measurements
- For some analyses, the statistic uncertainty is small enough, so it is important to reduce the systematic uncertainties, such as the systematic uncertainties from PID
- The dE/dx software in the BOSS including dE/dx correction, reconstruction, simulation, and calibration [3]

dE/dx calibration

- Using the reconstructed dE/dx of different particles
- Calibrating the expected dE/dx vs $\beta\gamma$. Calibrating the σ of dE/dx vs dE/dx, cos θ , and number of hits in the track (nhit)

dE/dx PID Performance

dE/dx correction

- To get unbiased dE/dx measurements
 Hit level corrections:
 - Run by run: due to the changes in gas pressure and temperature
 - Wire by wire: different drift chamber cell size, geometry, high voltage of signal wire, the radius of the signal wire
 - Doca and entrance angle: different drift distance of ionized electron to signal wire, non-uniform electromagnetic field

• Track level corrections:

- Space charge effect depends on cosθ and dE/dx itself. Smaller cosθ or larger dE/dx will have a larger space charge effect
- Different samples are used: e, mu, π, K, proton

The psi(3770) data taken in 2023 is used for the PID efficiency plots
Three hypotheses—pion, kaon, and (anti)proton—are being considered
Good agreement between data and MC simulation

Conclusion and outlook

The dE/dx software in the BESIII experiment is presented
The dE/dx software consists of dE/dx correction, reconstruction, simulation, and calibration
The dE/dx software has been smoothly working for many years and the PID performance looks good
Machine learning (ML) is increasingly being applied in the field of high-energy physics
Integrating ML technology into the dE/dx software is worth exploring. Such as the ML-based dE/dx simulation [4]

dE/dx reconstruction

Reference

[1]: BESIII Collaboration, Design and Construction of the BESIII Detector. Nucl.Instrum.Meth.A614:345-399,2010
[2]: For BEPC II Team, BEPC II: construction and commissioning, Chinese Phys. C 33 60, 2009
[3]: Cao Xue-Xiang, et al. Studies of dE/dx measurements with the BESIII. Chinese Phys. C 34 1852,2010
[4]: Wenxing Fang, et al. A data-driven dE/dx simulation with normalizing flow. Nucl.Instrum.Meth.A1065, 2024