Funded by HGS-HiRE, GSI Helmholtzzentrum für Schwerionenforschung, Helmholtz Forschungsakademie Hessen für FAIR, BMBF (No. 05P24RG6)

JUSTUS-LIEBIG-UNIVERSITAT GIESSEN

RICH RING RECONSTRUCTION USING MACHINE LEARNING FOR CBM Martin Beyer

II. Physikalisches Institut, Justus-Liebig-Universität Gießen

Compressed Baryonic Matter (CBM) experiment

- High statistics heavy-ion fixed target experiment
- Interaction rates up to 10 MHz with SIS100 beam at FAIR energy range: Au from 2 to 11 AGeV, protons from 3 to 29 AGeV
- Data acquisition via triggerless free-steaming readout
- Event selection in software by online reconstruction and trigger

- Prototype version of CBM operated at GSI
- Test-bench for soft- and hardware
- mRICH is a proximity-focusing design equipped with 36 (4x9) MAPMTs Downside: Additional clusters due to charged particles passing through MAPMTs \rightarrow More fake rings

Ring-imaging Cherenkov (RICH) detector

- Mirror focusing setup with 2 photon detectors
- 8x8 channel multi-anode photomultiplier tubes (MAPMT) \rightarrow in total \sim 65.000 pixels
- $CO₂$ as radiator gas
- Provides electron/pion separation from lowest momenta up to 8 - 10 GeV/c
- Pion threshold of 4.65 GeV/c

mRICH noise removal using a CNN

mini-RICH (mRICH) detector in the mini-CBM (mCBM) experiment

- Rings with different sizes and number of hits
- Often with slightly elliptical ring structure
- Overlapping rings and noise
- Partial and smeared ring recognition
- Very crowded central region, with most pion rings located there
- Minimization of fake rings to reduce particle miss-identification
- Taking into account hit times

Noise removal via convolutional neural network (CNN)

- U-Net trained to classify noise (center clusters + noise)
- Hidden activation: ReLU Output activation: Sigmoid
- Supervised learning on simulated data
- Include time via sliding time windows Input: $(0, 1)^{72 \times 32}$ \rightarrow Output: $(0, 1)^{72 \times 32}$
- Reaches > 92% accuracy (0.5 threshold)
- Model deployed into the CBM C++ codebase using ONNX Runtime
- Tested and in operation on real data

0

5

10

15

20

25

30

35

 $40\frac{2}{5}$

−10 −5 0 5 10

−15

−10

−5[

0[

5[

 10^F

 15

20[

y [cm]

0

0.1

0.2

 $0.4₂$

 $0.5₁$

 $0.6 \n\leq$

0.7

0.8

 $0.9[°]$

 $0.3\frac{2}{5}$

 $-20⁵$

NN classification 0: noise, 1: signal

 $\ddot{\circ}$

−10 −5 0 5 10

−20

−15

−10

−5[

0[

5[

 10^F

 15

20[

y [cm]

RICH ring reconstruction challenges

CBM RICH single-event-display of upper photo camera @ 11 AGeV Au+Au mbias

Ring reconstruction difficulties

- More efficient operation on sparse data
- Handling of time data \rightarrow No need for sliding time windows

RICH particle identification

- Ring track matching by closest distance
- \rightarrow Contribution to overall particle identification by ring size
- \rightarrow Requires precise ring centers and ellipse fit parameters
- Average numbers for 11 AGeV Au+Au mbias collisions:
- **–** 40 secondary electrons (mostly without STS tracks)
- **–** 9 pions
- **–** 350 track projections
- **–** < 1 primary electrons
	- (i.e. electrons from primary vertex)

HT ringfinder

HT ringfinder parameter optimization

- Current ringfinder based on a circular Hough transform (HT)
- Optimize ringfinder algorithm parameters to maximize ring finding efficiency and purity
- Usage of a random search approach
- \rightarrow Primary electron and pion efficiency increases while keeping ring purity the same

Ring selection using machine learning

- HT ringfinder itself only archives around 70% ring purity
- Remove fake rings by ML classification on ring parameters and structure, 2 approaches: Method 1: Classify ring candidates in the internal part of the HT algorithm
	- \rightarrow Slows down the algorithm too much Method 2: Do fake rejection after ring finding \rightarrow Can not reach the same primary electron efficiency as the first approach, but significantly faster
-
- 80% accuracy (0.5 threshold)

Future plans

Towards graph neural network (GNN) applications

Improvements over CNNs:

To be investigated:

- Structural awareness of rings using GNNs
- Under-reaching
- **–** Local, global transformation of hit positions
- **–** Graph creation, e.g. kNN in embedding space

Downstream task approaches

Link prediction:

- Predict whether pairs of hits belong together based on their respective position, time and surrounding structure
- Find individual rings using the HT ringfinder taking into account pair predictions

Instance segmentation/clustering:

• Find ring instances as the downstream task directly

• Followed up by an outlier stable ellipse fitter

