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CBM RICH RICH ring reconstruction challenges
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CBM RICH single-event-display of upper photo camera @ 11 AGeV Au+Au mbias
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f Ring reconstruction difficulties £ 8 =10° 2
STS+MVD/ - Rings with different sizes and number of hits & 7F |3
» Often with slightly elliptical ring structure € o  10°
Compressed Baryonic Matter (CBM) experiment * Overlapping rings and noise £ 5§ :
- High statistics heavy-ion fixed target experiment * Partial and smeared ring recognition | 4F 107
- Interaction rates up to 10 MHz with SIS100 beam at FAIR * Very crowded central region, with most pion
energy range: Au from 2 to 11 AGeV, protons from 3 to 29 AGeV rings located there | 2_ "
- Data acquisition via triggerless free-steaming readout * Minimization of fake rings to reduce particle E . i
« Event selection in software by online reconstruction and trigger miss-identification E" due to geometric effects
» Taking into account hit times Iy e e 1

Ring-track matching

RICH particle identification

i
\

Ring-imaging Cherenkov (RICH) detector _ _ _
 Ring track matching by closest distance

> Contribution to overall particle identification by ring size

-> Requires precise ring centers and ellipse fit parameters
« Average numbers for 11 AGeV Au+Au mbias collisions:

— 40 secondary electrons (mostly without STS tracks)

— 9 pions

— 350 track projections

— < 1 primary electrons

(i.e. electrons from primary vertex)

 Mirror focusing setup with 2 photon detectors

« 8x8 channel multi-anode photomultiplier tubes
(MAPMT) - in total ~ 65.000 pixels

« COy as radiator gas

* Provides electron/pion separation from lowest
momenta up to 8 - 10 GeV/c

 Pion threshold of 4.65 GeV/c
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RICH

MRICH noise removal using a CNN HT ringfinder

mini-RICH (mRICH) detector in the HT ringfinder parameter optimization

2 0.44F Entries 2942 —90§
mini-CBM (mCBM) experiment - Current ringfinder based on a circular Hough 5 04z g
- Prototype version of CBM operated at GSI transform (HT) § i
 Test-bench for soft- and hardware e Optimize ringfinder algorithm parameters to S 0.365- 50 2
 MRICH is a proximity-focusing design maximize ring finding efficiency and purity 2 0.345 40 E
. . - Pz
equipped with 36 (4x9) MAPMTs » Usage of a random search approach "o X ow 30
Downside: Additional clusters due to charged mCBM 2024 | - Primary electron and pion efficiency 0.8 seaseine |
. . . . . . . - 10
particles passing through MAPMTs Increases while keeping ring purity the same 0265 o
. 065 0.7 075 08 08 09 0.9 1
-> More fake r'nngs Ring reco efficiency primary electrons
Noise removal via convolutional T | . 2 E | : [ 0 I
neural network (CNN) 220" 40 5 220" 092 Ring selection using machine learning g 00F ﬁt |
- - — . ] i ] Q =5 _;:—F__——____:ﬁ'a;; 1 4
» U-Net trained to classify noise 15- 35 15 08 * HT ringfinder itself only archives around 70% 2 gj : +++++++”I|$¢*Hri+%
I ] i O : : © A + T 1
(center clusters + noise) 10- 30 10- ] 0.7 2 ring purity el by % |
 Hidden activation: Rel .U 5 N 5 . N A 6% « Remove fake rings by ML classification on ring 2 05t o
Output activation: Sigmoid o o ] @ - parameters and structure, 2 approaches: S 0.4 |
« Supervised learning on simulated data : 20 : 5 Method 1: Classify ring candidates in the in- o 03F e
i i~ - . o = New + Method 2 (0.8258
+ Include time via sliding time windows >t " . 43 ternal part of the HT algorithm o % o
nput; (0,1)72><32->Output: (()71)72><32 10} -10; . 032 > Slows down the algorithm too much S TR
- Reaches > 92% accuracy (0.5 threshold) 15 10 0.2 Method 2: Do fake rejection after ring finding o b 2 3 4 5 6 7 8 p[ge\”cl]"
e Model dep|0yed into the CBM C++ codebase _205_ 5 _205_ 0.1 > Can not reach the same primary electron
using ONNX Runtime S * S efficiency as the first approach, but signifi- 0 i
» Tested and in operation on real data 10 5 0 5 10 10 5 0 5 10 cantly faster N | S 09 I
x [em] x [cm] * Trade-off between efficiency, purity and latency 2 08 |
. B  In both cases the classification only reaches £ O7F e B e
: - —_ o 0.6 New + Method 2 (0.3582 — ———____:_,._._..._ ——
, 5 012 - 80% accuracy (0.5 threshold) S ook Y
! 0.1~ — denoise o OE - -
” - — simenn Setting PrimEl Eff. Pion Eff. Purity Latency / event S 04f = -
| 0.081~ Baseline 0.8118 | 0.3258 0.7041 6ms 04F- - -
= > —>—| | 0.06[ Baseline + Method 1| 0.8565 | 0.2524 [0.8570 650ms E —
------------------------- 0.0ak New 0.8707 | 0.4020 0.7016 10ms 0.2 = -
e : New + Method 2 0.8258 | 0.3582 0.8562 11ms 0.1 =
0.02 E L Pl
. Rk % _ 6
Convad BatchNorm MaxPool2d Conv2dTranspose —>—Residual connection ring radius [cm]

Future plans

Towards graph neural network (GNN) applications Downstream task approaches rb
Improvements over CNNs: Link prediction: .
« More efficient operation on sparse data » Predict whether pairs of hits belong together based on their re- .
« Handling of time data » No need for sliding time windows spective position, time and surrounding structure e h
 Find individual rings using the HT ringfinder taking into account -
To be investigated: pair predictions AL .
» Structural awareness of rings using GNNs et e -
» Under-reaching Instance segmentation/clustering: . _ :
- Find ring instances as the downstream task directly S .

— Local, global transformation of hit positions

— Graph creation, e.g. kNN in embedding space » Followed up by an outlier stable ellipse fitter
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