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CBM RICH

Compressed Baryonic Matter (CBM) experiment
• High statistics heavy-ion fixed target experiment
• Interaction rates up to 10 MHz with SIS100 beam at FAIR

energy range: Au from 2 to 11 AGeV, protons from 3 to 29 AGeV
• Data acquisition via triggerless free-steaming readout
• Event selection in software by online reconstruction and trigger

Ring-imaging Cherenkov (RICH) detector

• Mirror focusing setup with 2 photon detectors
• 8x8 channel multi-anode photomultiplier tubes

(MAPMT) : in total ∼ 65.000 pixels
• CO2 as radiator gas
• Provides electron/pion separation from lowest

momenta up to 8 - 10 GeV/c
• Pion threshold of 4.65 GeV/c

mRICH noise removal using a CNN

mini-RICH (mRICH) detector in the
mini-CBM (mCBM) experiment

• Prototype version of CBM operated at GSI
• Test-bench for soft- and hardware
• mRICH is a proximity-focusing design

equipped with 36 (4x9) MAPMTs
Downside: Additional clusters due to charged
particles passing through MAPMTs
: More fake rings

Noise removal via convolutional
neural network (CNN)

• U-Net trained to classify noise
(center clusters + noise)

• Hidden activation: ReLU
Output activation: Sigmoid

• Supervised learning on simulated data
• Include time via sliding time windows

Input: (0, 1)72×32 : Output: (0, 1)72×32

• Reaches > 92% accuracy (0.5 threshold)
• Model deployed into the CBM C++ codebase

using ONNX Runtime
• Tested and in operation on real data
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RICH ring reconstruction challenges
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CBM RICH single-event-display of upper photo camera @ 11 AGeV Au+Au mbias

Ring reconstruction difficulties

• Rings with different sizes and number of hits
• Often with slightly elliptical ring structure
• Overlapping rings and noise
• Partial and smeared ring recognition
• Very crowded central region, with most pion

rings located there
• Minimization of fake rings to reduce particle

miss-identification
• Taking into account hit times 1
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RICH particle identification

• Ring track matching by closest distance
: Contribution to overall particle identification by ring size
: Requires precise ring centers and ellipse fit parameters

• Average numbers for 11 AGeV Au+Au mbias collisions:
– 40 secondary electrons (mostly without STS tracks)
– 9 pions
– 350 track projections
– < 1 primary electrons

(i.e. electrons from primary vertex)

HT ringfinder

HT ringfinder parameter optimization

• Current ringfinder based on a circular Hough
transform (HT)

• Optimize ringfinder algorithm parameters to
maximize ring finding efficiency and purity

• Usage of a random search approach
: Primary electron and pion efficiency
increases while keeping ring purity the same
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Ring selection using machine learning

• HT ringfinder itself only archives around 70%
ring purity

• Remove fake rings by ML classification on ring
parameters and structure, 2 approaches:

Method 1: Classify ring candidates in the in-
ternal part of the HT algorithm
: Slows down the algorithm too much
Method 2: Do fake rejection after ring finding
: Can not reach the same primary electron
efficiency as the first approach, but signifi-
cantly faster

• Trade-off between efficiency, purity and latency
• In both cases the classification only reaches

80% accuracy (0.5 threshold)
Setting PrimEl Eff. Pion Eff. Purity Latency / event
Baseline 0.8118 0.3258 0.7041 6ms
Baseline + Method 1 0.8565 0.2524 0.8570 650ms
New 0.8707 0.4020 0.7016 10ms
New + Method 2 0.8258 0.3582 0.8562 11ms
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Future plans

Towards graph neural network (GNN) applications

Improvements over CNNs:
• More efficient operation on sparse data
• Handling of time data : No need for sliding time windows

To be investigated:
• Structural awareness of rings using GNNs
• Under-reaching

– Local, global transformation of hit positions
– Graph creation, e.g. kNN in embedding space

Downstream task approaches

Link prediction:
• Predict whether pairs of hits belong together based on their re-

spective position, time and surrounding structure
• Find individual rings using the HT ringfinder taking into account

pair predictions

Instance segmentation/clustering:
• Find ring instances as the downstream task directly
• Followed up by an outlier stable ellipse fitter


