

Introduction

Kalman Filter for muon reconstruction in the High-Granularity Calorimeter (HGCAL)

Mark Matthewman on behalf of the CMS Collaboration

mark.matthewman@cern.ch

High-Luminosity Phase

- High-Luminosity Phase of Large Hadron Collider (HL-LHC) will increase instantaneous luminosity by 7.5 and collect 3000 fb⁻¹
- High multiplicity environment challenging due to high PU of O(200) and 10-fold increase in radiation levels
- Phase 2 upgrades for CMS and ATLAS experiment necessary

[1]

What is **HGCAL**?

• Sampling calorimeter covering $1.5 < \eta < 3.0$ • 47 layers split into CE-E and CE-H containing a mix of hexagonal silicon sensors and scintillator tiles

Why muon reconstruction in a calorimeter?

Thickness:	120, 200, 300 µm	
Area:	0.56, 1.27 cm ²	5-27 cm ²
# of Sensors:	~ 6 M	~ 320k

noise and makes identification of the MIP peak very difficult

Kalman Filter (KF) in HGCAL

- Create initial Trajectory State On Surface (TSOS)
 - Extrapolate track from tracker to first layer of HGCAL

(Forward) Prediction Step

- Propagate state (incl. covariance matrix) to next layer w. Runge Kutta (RK) Propagator creating new TSOS
- Incl. material effects

Update Step

- Find candidate RecHits in search window based on TICL [4] layer tiles [5]
- Select compatible RecHit with lowest chi2 score below fixed threshold (30)
- Upate **TSOS** (incl. covariance matrix) w. compatible RecHit incl. local error of sensor

Apply Smoothing to Trajectory

- Propagate information gained on the state backwards from the last layer to the first in backward prediction step
- Create smoothed state as weighted combination of forward prediction and backward updated state.

Let's test it!

- Samples were generated for different η and energy regions
 - η ∈ [1.7, 2.3, 2.7]
 - E ∈ [10 GeV, 20 GeV, 50 GeV, 100 GeV]
- The KF run in in-out fashion. Option for out-in also implemented.
- To test the benefit of using hits in the HGCAL to track the muon the RK was run without the update step (Standalone Propagator)

CMS Simulation Preliminary

Is it efficient?

- The efficiency (TSOS contained) to select a hit belonging to a signal per layer is
 - > 95% for 0 and 200 PU for all energies and $\eta = 1.7$ and 2.3
 - > 80% for 200 PU for η = 2.7 and 10 GeV

CMS Simulation Preliminary

Single Muon

E = 100 GeV

n = 2.7

-0 - PU 0, KF

- PU 0, Standalone Propagator

---- PU 200, Standalone Propagato

10 15

20 25

35

30

40 45

Laver

2 0.4

0.2

• The efficiency (TSOS contained) for the state to be contained within the boundaries of the sensor with a signal hit per layer is > 70%

Is the state reasonable?

- A rescaling factor was applied to the first layer to account for imperfections in the estimation of uncertainties after the propagation of the TSOS from the tracker
- The **pull distributions** show no significant bias and the fit gives σ values between 0.9 and 1.5 for η = 2.7 and 2.3
- For $\eta = 1.7$, σ jumps to ~2 at the transition to scintillators (layer 34)

Layer 1, μ = -0.038, σ = 1.153

Layer 26, μ = -0.04, σ = 1.151

Layer 44, μ = -0.056, σ = 1.437

-10 -8 -6 -4 -2 0 2 4

6 8 10

 $\Delta \mathbf{x} / \sigma_{\mathbf{x}\mathbf{x}}$

CMS Simulation Preliminary

E = 100 GeV

η = 1.7 KF

0.25

0.2

0.15

0.1

0.05

• The position uncertainty given as a 95% **confidence** ellipse of the smoothed state is contained within the boundaries of the sensors for all η and layers at 100 GeV

Is it close to the truth?

[3]

- **Residuals** calculated as the distance between the MC truth position and the position of the smoothed state
- Gives a tight distribution with σ_{eff} (defined as IQR containing 68%) smaller than boundaries of the sensor cells
 - State in first layer defined fully by backward prediction \rightarrow larger σ_{eff} from 0.1 to 0.2 cm
 - Depending on sensor type and CE-E vs CE-H, σ_{eff} ranges from 0.02 in the first layers to 0.6 cm in the last layer

CMS Simulation Preliminary

CMS Simulation Preliminary

Financially supported by CERN and the Austrian Federal Ministry of Education, Science and Research.

19. -25. October 2024 CHEP 2024, Krakow

• Improve treatment of

Implement cuts based

material effects

to improve purity

• Define calibration

procedure