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Introduction

mhy muon reconstruction
In a calorimeter?

/ What is HGCAL?

« Sampling calorimeter covering 1.5 <n < 3.0
* 47 layers split into CE-E and CE-H containing a mix of

/High-Luminosity Phase

« High-Luminosity Phase of Large Hadron Collider (HL-
LHC) will increase instantaneous luminosity by 7.5 and

collect 3000 fb-1 hexagonal sensors and scintillator tiles
* High multiplicity environment challenging due to high PU » Regular intercalibration
of O(200) and 10-fold increase in radiation levels (! necessary to preserve sagopop R0
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Kalman Filter (KF) in HGCAL Let’s test it!
1 Create initial Trajectory State On Su.rface (TSOS) v . Samples were generated for different n and energy
« Extrapolate track from tracker to first layer of HGCAL regions
o *ne[l1.7, 2.3, 2.7]
(F°"';ard) Prediction Step | \ . E  [10 GeV, 20 GeV, 50 GeV, 100 GeV]
* Propagate state (incl. covariance matrix) to next layer w. Runge Kutta (RK) \ . . . .
Propagator creating new o@ . * The KF run in in-out fashion. Option for out-in also
* Incl. material effects L Trajectory implemented. .
« To test the benefit of using hits in the HGCAL to track
Update Step g ~d the RK ithout the update st
» Find candidate RecHits in search window based on TICL [4] layer tiles [5] LA S? mCL:OI” eP wast run without the Update step
« Select with lowest chi2 score below fixed threshold (30) @ : (Standalone Propagator)
« Upate TSOS (incl. covariance matrix) w. compatible RecHit incl. local error "
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Apply Smoothing to Trajectory
* Propagate information gained on the state backwards from the last layer to
the first in backward prediction step
» Create smoothed state as weighted combination of forward prediction and
backward updated state.
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Is it efficient? Is the state reasonable? Is it precise?

« The efficiency (TSOS contained) to select a hit * Arescaling factor was applied to the first layer to account « The position uncertainty given as a 95% confidence
belonging to a signal per layer is for imperfections in the estimation of uncertainties after ellipse of the smoothed state is contained within the
* > 95% for 0 and 200 PU for all energies and n = 1.7 and 2.3 the propagation of the TSOS from the tracker boundaries of the sensors for all n and layers at 100
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Is it close to the truth?
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