Anomaly Detection using Autoencoders on Fundamental LZ Signals

Tyler Anderson, for the LUX-ZEPLIN Collaboration CHEP - Kraków, 2024-10-22

OUTLINE

- LZ basics and motivation
- Anomaly detection on all waveforms
- Anomaly detection on quality S2 waveforms
	- Using basic autoencoders
	- Using variational autoencoders
- Anomaly detection on quality S1 waveforms
	- Using variational autoencoders

LUX-ZEPLIN (LZ) BASICS

The LZ detector is located \sim 1 mile underground in Lead, South Dakota. We hunt for dark matter.

Xe-filled Time Projection Chamber (TPC)

Skin (veto)

Outer detector liquid-scintillator (veto)

Outer detector PMTs

Water tank

LZ PHYSICS

- Photomultiplier tubes (PMTs) detect light within the TPC
- Recoils generate two light signals:
	- S1 light: proportional to Xe excitations **(photons)**
	- S2 light: proportional to Xe ionizations **(electrons)**
- 3D position reconstruction of recoils:
	- XY comes from the S2 light pattern
	- Z comes from the time between S1 and S2 as electrons drift up in the electric field
- S1 and S2 size and shape help separate non-WIMP recoils from WIMP-like recoils

We use data quality cuts to exclude clearly non-WIMP recoils

 \triangleright Are there any pathological backgrounds we aren't cutting?

Reconstruction potentially washes out features that help identify detector pathologies

 \triangleright Search for anomalous PMT waveforms, independent of reconstruction

TIME SERIES ON ALL WAVEFORMS

Idea: scan over waveforms and label anomalous portions of any waveforms

Implementation: scan a dense autoencoder over waveform segments & label high

reconstruction losses as anomalous

- This yields some interesting findings (e.g. undersized photons, right)
- However, by training on mostly junk (single photons, electron light), all S1s and S2s naturally emerge as "anomalies"

S2 - BASIC AUTOENCODER

Idea: train only on S2s passing our 2022 WIMP search's S2-based quality cuts in order to detect poor-quality S2s as anomalous

Implementation: use a basic 1D CNN autoencoder

S2 - AUTOENCODER ANOMALIES

Found two notable forms of anomaly *among quality S2s*:

- 1. Unresolved multiple scatters at higher energies (above the WIMP search ROI)
- 2. Noisy low-energy S2s (uninteresting limitation)

Idea: latent space is easier to interpret with VAEs, and provide clusters to investigate

Implementation: add the typical VAE layers and loss with a 2-dimensional latent space

Preliminary Testing data, quality S2s:

Idea: latent space is easier to interpret with VAEs, and provide clusters to investigate

Implementation: add the typical VAE layers and loss with a 2-dimensional latent space

Plot a grid of decoded latent space vectors *z*.

Results:

- Latent component z_0 encodes a width-like property, correlating with drift time
- Latent component z_1 encodes a skew-like property

Idea: latent space is easier to interpret with VAEs, and provide clusters to investigate

Implementation: add the typical VAE layers and loss with a 2-dimensional latent space

Outliers include similar anomalies as before, and waveforms on the right. These are not a concern for WIMP searches but useful to know about when tuning waveform-based cuts.

Idea: train VAEs on S1 waveforms that pass S1-based quality cuts, although S1 waveforms are generally thought to encode less physical information

Implementation: same as for S2, but with dense layers as inputs are much shorter

Results:

- \bullet *z*₀ roughly encodes the S1 size, even though waveform amplitudes are scaled to [0, 1]
- Some outliers at low *z1* have strange tails, but aren't *too* strange

- AEs provide an additional method for identifying unresolved multiple scatters
- VAEs can learn basic interpretable features of waveforms
- VAEs can help identify normal or abnormal waveforms when tuning waveform-based cuts
- Next steps:
	- Use with more recent data
	- Better understand the VAE encodings, try increasing the latent space dimension

Thank you!

Thanks to our sponsors and 38 participating institutions!

