

Track reconstruction in the STCF detector

Hang Zhou on behalf of the STCF tracking group

2024.10.24, CHEP2024, Kraków, Poland

- Introduction
- Global track finding based on the Hough transform
- Track reconstruction at STCF using ACTS
- ML techniques in STCF track reconstruction
- Outlook and summary

Super Tau-Charm Facility(STCF)

- Electron-positron collider (China)
- E_{cm} =2-7GeV, L> 0.5 × 10³⁵ cm⁻² s⁻¹(peak)
- Potential for an upgrade to increase L and realize polarized beam

- Energy region bridges perturbative and non-perturbative QCD.
- Abundant resonance structures, huge production cross-sections for charmonium states.
- Threshold effect of pair production of hadron and τ .
- Copious production of exotic hadrons (multi-quark, and hybrid states).

Tracking System : ITK + MDC

Two options inner tracker(ITK)

• Main tracker

- Tracking system works in a **1T** magnetic field.
- The presented results are based on the MPGD ITK +MDC.

STCF offline software

• The Offline Software of Super Tau-Charm Facility(OSCAR) provides a comprehensive platform for offline event processing, including simulation, digitization, reconstruction and analysis.

- The reconstruction of (charged) particle tracks is the key part of reconstruction.
- Expected detector resolution: MDC: 120μm(drift distance) ITK: 100 μm (rφ) x 400 μm (z)

Track Reconstruction in STCF

Momentum distributions of charged particles

- most particles p < 1 GeV
- a considerable number of particles with p < 0.4 GeV
- Goal: reconstruct particles with *p* 50 MeV 3.5 GeV

only three layers of ITK \rightarrow

The seeding(use ITK hits) efficiency is greatly influenced by the detector efficiency

- Global track finding based on Hough transform
 - handle the hits form ITK and MDC simultaneously
 - Kalman fitting using Genfit2
- Local method(using ACTS)
 - Seeding + Combinatorial Kalman Filter (CKF)
 - find seeds using hits(space point) on ITK layers
 - associate compatible MDC hits to tracks
- Machine learning techniques
 - GNN for background filter
 - clustering(track finding) using DBSCAN、RANSAC

Track finding based on the Hough transform

Tracking Performance in Full Simulation

• particles in $\psi(3686) \rightarrow \pi + \pi - J/\psi$, $J/\psi \rightarrow \mu + \mu$ - events are studied

- Without background
- Varying detection efficiencies of both ITK and MDC.
- The global algorithm is robust against local inefficiency.
- High track finding efficiency is maintained even with reduced detector efficiency.

- Track finding efficiency under different background levels (with detection efficiency at 100%)
- The track finding efficiency of particles with low transverse momentum and large dip angles is more significantly influenced by the background.

Performance in MC

- In the majority of momentum ranges, the relative momentum resolution is better than 0.6%
 - The parameter resolution deteriorates as the detection efficiency decreases (with fewer hits)
 - An increase in background levels affects efficiency but has very little impact on resolution (hence resolutions for different background levels are not shown)

Implemention of ACTS into OSCAR

Performance in MC

Preliminary results

- The results demonstrate that ACTS performs well, especially in reconstructing very low momentum particles since the algorithm can consider material effects during track finding.
- Some algorithm parameters need to be further optimized
 - When performing CKF, some MDC stereo hits were not correctly assigned to the track.
 - When reconstructing with background, there are many fake seeds.

MDC backgroud filter using GNN

- Graph nodes \rightarrow Hits, Graph edges \rightarrow track segments
- GNN structure: input network, node network, edge network
- Input: node features(drift distance, coordinate of signal wires), adjacency matrices, edge labels
- Output: edge weight
- > High weight \rightarrow the edge belongs to a true particle track
- > Low weight \rightarrow it is a spurious or noise edge

MDC backgroud filter using GNN

• Simulated J/ $\psi \rightarrow \rho \pi \rightarrow \gamma \gamma \pi + \pi$ - events, Hough-transform-based reconstruction

- The reconstruction efficiency after GNN filtering noise is significantly improved
- At large |cosθ|, the tracking efficiency decreases due to fewer signal and more noise

Clustering using ML techniques

Density-Based Spatial Clustering of Application with Noise (DBSCAN)

- a) Real space
- b) Conformal plane
- c) Parameter space
 - Hits connected in the X-Y plane in a straight line
 - α as the angle between the straight line and X axis
 - The parameter space as cosα and sinα
- d) DBSCAN clustering in 'α'parameter plane
 - Hits in a cluster are considered to be in the same track

Random Sample Consensus (RANSAC) - salvage algorithm

- Polar coordinate space
- Fit a track through one set of points, then fit through the remaining points
- linear model
- Its good robustness to noise and outliers

Conformal plane

Summary and Outlook

- Summary
 - □ The complete chain for track reconstruction has been established.
 - Currently, two track reconstruction algorithm are available for use, still under continuous optimization
 - ✓ Track finding based on the Hough transform
 - ✓ Seeding + CKF using ACTS
 - A GNN-based MDC noise filter has been developed, and research is underway to utilize machine learning methods for track finding.
 - MC results show promising performance, still under continuous optimization <u>Poster(TUE 36)</u>: Hough transform + ACTS for long-lived particles tracking
- Outlook
 - Combining and tunning different algorithms to achieve better overall performance.
 - Develop a seeding algorithm more suitable for STCF (using MDC hits rather than only ITK)
 - Further optimization for long-lived particles
 - Detector spectrometer optimization
 - Detector performance and spectrometer design determine the reconstruction quality and choice of algorithms.

Back up

Background

Touschek effect

- Scattering between inner beam particles
- Generation rate $\propto N_{bunch}$, beam size⁻¹, energy⁻³
- Main Background

Beam-gas effect

• Effect with residual gas in the beam pipe

 e^{\pm}

Ν

- Coulomb scattering, bremsstrahlung
- Generation ∝ pressure

Yupeng Pei

Luminosity-related background

- Radiative Bhabha: $e^+e^- \rightarrow e^+e^-\gamma$
- Two-photon process: $e^+e^- \rightarrow e^+e^-\gamma^*\gamma^* \rightarrow e^+e^-e^+e^-$

Other background

- Injection
- Synchrotron radiation

5

Background hits count per event

ITK1	ITK2	ITK3	MDC1	MDC2	MDC3	MDC4	MDC5	MDC6	MDC7	MDC8
37.3	13.6	8.2	60.3	42.4	24.8	25.1	60.0	67.8	30.8	30.0

Hough map with background

Hough(Legendre) transform

- a point in the image space -> a line(or a curve) in Hough space
- some points on a line -> lines intersecting at a point in Hough space
- The intersection point in the Hough space corresponds to the line in the image space
- Hough transform with drift distance (Legendre transform)

one MDC hit -> two curve in Hough space

