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1 Super Tau-Charm Facility

Super Tau-Charm Facility (STCF) is a new generation of positron-electron colliders proposed in China

• Center-of-Mass Energy  2-7 GeV

• peak luminosity  0.5×1035 cm−2s−1

• higher-luminosity upgrades and beam 

polarization in the future

From the interaction point outward:  

- Tracking system (ITK and MDC)  

- Particle identification system (PID)  

- Electromagnetic calorimeter (EMC)  

- Superconducting solenoid (SCS)  

- Muon detector (MUD) 

rich physics research

• charm quarks and τ leptons

• Non-perturbative strong interactions 

and hadronic structure

• Search for new physics
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1 PID Requirements

Particle identification (PID) is an important tool for conducting physics 

research in collider experiments.

• 𝑝 < 2 GeV/c, 𝜋/𝐾 misidentification rate < 2%, identification efficiency > 97%

• 𝑝 > 0.7GeV/c, μ identification efficiency > 95%; 0.5 < 𝑝 < 0.7, > 70%

• Good neutral particle identification capability

The PID system uses two Cherenkov detector technologies:

• a Ringing Imaging Cherenkov detector (RICH) in the barrel 

• a time-of-flight detector based on the detection of the internal total-reflected 

Cherenkov light (DTOF) in the endcap
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1 Machine learning-based PID Technology

Machine learning: excellent performance in PID by extracting useful features in high-dimensional spaces

• Combining information from multiple sub detectors

• Fully utilize the original response of the detector

• Decision trees and neural networks have gradually 

become the mainstream methods of PID

Relying solely on information from a single sub detector makes it challenging to accurately distinguish particles
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Various PID techniques based on ML algorithms for different types 

of detectors used in STCF



2 DTOF Detector

• DTOF consists of two identical discs, containing multiple sectors

• covering in polar angles of ~23-36°

• synthetic fused silica serves as the Cherenkov radiator to generate photons 

• an array of MCP-PMTs are optically coupled to the radiator along the outer 

side to detects the Cherenkov photons

As the endcap PID detector of the STCF, the DTOF employs a technology based on the detection of 

internally total-reflected Cherenkov light
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2 Two-dimensional pixel map
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Combine the time-space information of Cherenkov photons hitting the PMT

• X-label: Hit channels of Cherenkov photons received by the PMT  

• Y-label: Arrival time of Cherenkov photons received by the PMT  

• Value: Number of photons in the bin 

Using the original response from the detector, construct a two-dimensional 

pixel map:

𝑘𝑎𝑜𝑛 −
𝑝 = 2𝐺𝑒𝑣/𝑐, 𝜃 = 30°, 𝜑 = 50°

𝑝𝑖𝑜𝑛 −
𝑝 = 2𝐺𝑒𝑣/𝑐, 𝜃 = 30°, 𝜑 = 50°

A larger pixel area indicates that at the current time, photons have a greater 

probability of hitting the corresponding channel

CNN Algorithm is a suitable choice



2 Data Sample

8

• 𝑝 ∈ 0.3-2.4 GeV/c, 𝜃 ∈ 23 − 36°, 𝜑 ∈ 0-2𝜋

• 0 ≤ Channel ≤ 864

• 5.5 ≤ Time ≤ 15.5 ns (Time resolution ~ 50 ps)

• bin number: Channel * Time =216* 200

OSCAR simulates the digitized MC samples for 
Pion/Kaon 

CNN Algorithm : process the 2D pixel map constructed for each event 



2 CNN Model: EfficientNetV2

EfficientNet

• Using EfficientNetV2-Small as the baseline model, adjusting and optimizing the network structure

• The model input consists of a 2D image constructed from the photon hit channels and arrival times

• Tracking momentum and position extrapolated to DTOF is added to a fully connected layer

Version1：Utilizes a composite coefficient to uniformly scale the depth, width, and input image of the network

Version2：More lightweight, it reduces the number of parameters, thereby accelerating computation speed

(Fused)MBConvV1 Accuracy V2 Improvement

9

arXiv:2104.00298



2 CNN PID Performance

The signal efficiency and background misidentification rate for pion/kaon across momentum and polar angle
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• The CNN model exhibits good PID capability in most of the phase space

• Meet the STCF requirements for π/K identification (p<2Gev/c, eff >97%)

• The performance in the high momentum and large angle shows a decline 
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adjust thresholds on the predicted probabilities to control the misid rate 

of kaons < 2%:



3

11

Future HEP experiments with higher energy requirements will pose significant challenges to traditional 

methods, and current ML algorithms will also consume more computational resources. 

➢ simplify computational complexity, accelerating computation speed

➢ leverag more information in high-dimensional Hilbert spaces through 

superposition and entanglement

• Quantum machine learning: under the domain of quantum computing/algorithm

➢ Provide alternatives/enhancement for traditional machine learning algorithms

• Potential quantum advantage for ML problems

Quantum Computing and Quantum Machine Learning



3 QML for HEP
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•  Quantum Generative Adversarial Networks (QGAN) for physical simulations

•  Quantum Graph Neural Networks (QGNN) for track reconstruction

•  Quantum Support Vector Machines (QSVM) and Variational Quantum Classifiers (VQC) for event classification

Due to the limitations of NISQ, most current QML algorithms are hybrid quantum-classical algorithms. 

Parameterized quantum circuits are used as structural layers in machine learning models.

The application of QML algorithms in HEP

Based on classical CNNs, we have developed a Quantum Convolutional Neural Network (QCNN) to conduct 

feasibility studies on the 𝜋/𝐾 identification, exploring potential quantum advantages.



4 QCNN Workflow

𝒙𝒊
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Classical data cannot be processed directly on quantum system and must be mapped into quantum state space 

through data encoding circuits.  The quantum circuit does not apply the entire image map to a quantum system at 

once, but processes it using RX rotation gate as much as the filter size at a time.



4
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𝜽
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QCNN Workflow

Use parameterized variational quantum circuits to process the quantum states generated from the image sub-regions 

in the previous step.

The decoding process is achieved by measuring the qubits on the observables ෝ𝒐. The expectation value from multiple 

measurements is deterministic. Based on this classical value, quantum convolutional layers can naturally couple with 

the subsequent classical layers.



4 Performance Comparison between QCNN and CNN

‣ Single Q/C ONV2D(filters = n, (2, 2), shape= (32*32)),

‣ Flatten()

‣ Dense(128, activation=‘relu’),  Dense(2)

‣ Adam learning_rate = 0.0001, batch_size = 16

CNN QCNN

CNN QCNN

15

Test a performance comparison between a single QCNN/CNN layer with 1, 2, and 4 convolutional kernels

• The quantum circuit utilizes rotation gates with four 

parameters, maintaining the same parameter level as a 

2*2 classical convolutional kernel. 

• On small datasets, the QCNN demonstrates feature 

extraction and learning capabilities comparable to those 

of classical CNNs.



5 Summary
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• For the 𝜋/𝐾 identification on DTOF, we developed a CNN model based on original detector responses 

and reconstructed features. 

• The CNN performance currently meets the physical requirements of STCF, but there is still room for 

optimization at high momentum and large angle ranges.

• Quantum machine learning is expected to provided new algorithm possibilities in high-energy physics 

experiments due to potential quantum advantages.

• A feasibility study on QML showed that QCNN and CNN perform similarly on small datasets. 

• Due to quantum resource limitations, comparisons have only been made on small-scale datasets. 

Handling large-scale data remains a key advantage for classical machine learning.
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