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Super Tau-Charm Facility

Super Tau-Charm Facility (STCF) is a new generation of positron-electron colliders proposed in China

 Center-of-Mass Energy 2-7 GeV rich physics research

 peak luminosity 0.5x1035 cm=2s-1 * charm quarks and t leptons

* higher-luminosity upgrades and beam  ° Non-perturbative strong interactions
polarization in the future and hadronic structure

e Search for new physics
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From the interaction point outward:

- Tracking system (ITK and MDC) . :ﬂgm.v g?nndd;"::ber

- Particle identification system (PID)
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- Electromagnetic calorimeter (EMC)

- Superconducting solenoid (SCS) o9 16 pCst APD
| Deerwces J - Muon detector (MUD) L_;_“ s 4
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PID Requirements

10*

— pine’e— pply @ 6.0 GeV
pin Jiy—AA @ 3.097 GeV

e K in KK+X @ 7.0 GeV

— xint K'av @ 4.26 GeV

— ninJy—AX @ 3.097 GeV

— N TR @ 4.26 GeV

nint— 3u @ 4.26 GeV

in D—muv @ 3.77 GeV

e/u in e'e — xny(3686) @ 4.66 Ge

Particle identification (PID) is an important tool for conducting physics
research in collider experiments. 10°

* p < 2GeV/c, m/K misidentification rate < 2%, identification efficiency > 97%

* p > 0.7GeV/c, u identification efficiency > 95%; 0.5 < p < 0.7, > 70%

« Good neutral particle identification capability 00 05 10 15 20 25 30 35
P (GeV/c)

The PID system uses two Cherenkov detector technologies:

» aRinging Imaging Cherenkov detector (RICH) in the barrel wsen

 atime-of-flight detector based on the detection of the internal total-reflected
Cherenkov light (DTOF) in the endcap




Machine learning-based PID Technology

Relying solely on information from a single sub detector makes it challenging to accurately distinguish particles

Machine learning: excellent performance in PID by extracting useful features in high-dimensional spaces

50[,1 T T T T T

e Combining information from multiple sub detectors “I
* Fully utilize the original response of the detector s
* Decision trees and neural networks have gradually Basf

become the mainstream methods of PID

electromagnetic  hadronic muon gl s bbby s f b ol |
tracker calorimeter calorimeter detector 200 300 400 500 600 700 800 900 1000 1100 1200 1300
p (MeV)
Y dE/dx Sepa. in STCF
et/e” Tracker
ptfu~ (dE/dx) PID for charged particles
charged (BDT/MLP/Transformer)
hardon PO 4_ ______ -
neutral Detectors | N/ /Il \
PID for charged hardons
hadron (CNN?GNN) . ONNX :
neutrino ECAL e — - ;
inner layer outer layer ]
PID for neutral particles
. . . . GlobalPID
Various PID techniques based on ML algorithms for different types MUD (BOT/MLP/CNN)

of detectors used in STCF

PID algorithms based on machine learning for STCF
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E DTOF Detector

As the endcap PID detector of the STCF, the DTOF employs a technology based on the detection of
internally total-reflected Cherenkov light I

DTOF consists of two identical discs, containing multiple sectors

* covering in polar angles of ~23-36° [ st memein |

» synthetic fused silica serves as the Cherenkov radiator to generate photons " '————soma E}% )
) S
* an array of MCP-PMTs are optically coupled to the radiator along the outer | moc
side to detects the Cherenkov photons RS T S T
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E Two-dimensional pixel map

Arrival Time (ns)

Arrival Time (ns)

Combine the time-space information of Cherenkov photons hitting the PMT

s kaon —
p = 2Gev/c,0 = 30° ¢ = 50°

Using the original response from the detector, construct a two-dimensional
N " pixel map:

* X-label: Hit channels of Cherenkov photons received by the PMT

100 200 500 do0 S0 600 70000 * Y-label: Arrival time of Cherenkov photons received by the PMT

Hit Channel

e Value: Number of photons in the bin

pion —
p = 2Gev/c,0 = 30° @ = 50°

A larger pixel area indicates that at the current time, photons have a greater
probability of hitting the corresponding channel

CNN Algorithm is a suitable choice

800 700 800
Hit Channel



E Data Sample \

kaon- DTOFDigi corr
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OSCAR simulates the digitized MC samples for - 2 2 350
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CNN Algorithm : process the 2D pixel map constructed for each event
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2 | CNN Model:

EfficientNet

EfficientNet\V/2

Versionl : Utilizes a composite coefficient to uniformly scale the depth, width, and input image of the network
Version2: More lightweight, it reduces the number of parameters, thereby accelerating computation speed

V1 Accuracy V2 Improvement
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g : EfficientNet-B1 79.0%  T.8M s /S e
E 6 [ ResNeXt- 101 (Xic etal . 2017)| B0.9% M = - 4é-‘ -
My o . EfficientNet-B3 BL6% 1M ] -~ B6
- 1 ResNet-50 SENe (Hu et al., 2008 BIL7%  T46M E¥ -
I g NASNct-A (Zophetal, 2018) | 827%  89M rag
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"1 NASNet-A EfficientNet-B7 843%  66M »° Xiv-2104.00298
. "Not plowed o r -
ResNet-34 8 v LAY :
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Number of Parameters (Millions) 1 2 3 4 5] 6
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(Fused)MBConv
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depthwise
conv3x3
Conv3x3
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* Using EfficientNetV2-Small as the baseline model, adjusting and optimizing the network structure

* The model input consists of a 2D image constructed from the photon hit channels and arrival times

* Tracking momentum and position extrapolated to DTOF is added to a fully connected layer



2 ll CNN PID Performance

The signal efficiency and background misidentification rate for pion/kaon across momentum and polar angle
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I O T * The performance in the high momentum and large angle shows a decline
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B Quantum Computing and Quantum Machine Learning

Future HEP experiments with higher energy requirements will pose significant challenges to traditional
methods, and current ML algorithms will also consume more computational resources.

« Quantum machine learning: under the domain of quantum computing/algorithm

» Provide alternatives/enhancement for traditional machine learning algorithms
- Potential quantum advantage for ML problems

» simplify computational complexity, accelerating computation speed

» leverag more information in high-dimensional Hilbert spaces through

superposition and entanglement

11)
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'3l QML for HEP +

The application of QML algorithms in HEP

*  Quantum Generative Adversarial Networks (QGAN) for physical simulations
*  Quantum Graph Neural Networks (QGNN) for track reconstruction

*  Quantum Support Vector Machines (QSVM) and Variational Quantum Classifiers (VQC) for event classification

Due to the limitations of NISQ, most current QML algorithms are hybrid quantum-classical algorithms.

Parameterized quantum circuits are used as structural layers in machine learning models.

Based on classical CNNs, we have developed a Quantum Convolutional Neural Network (QCNN) to conduct
feasibility studies on the m /K identification, exploring potential quantum advantages.

12



n QCNN Workflow \

1. Data encoding circuit

Classical data cannot be processed directly on quantum system and must be mapped into quantum state space

through data encoding circuits. The quantum circuit does not apply the entire image map to a quantum system at

once, but processes it using RX rotation gate as much as the filter size at a time.

T cos 3  —isin & o .
RX(x;) = exp(—i—X) = L o x; is fixed by the classical feature
2 —i8in < COS 5
x1|x2 0) ] . B
- ——‘\_\—
>
x3 | x4 - Qi
pixel map e U(x) W () /7/\ .
0)
0) — |
input data quantum convolutional layer convolutional layer pooling layer  full connected layer
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n QCNN Workflow

2. Quantum convolution circuit

Use parameterized variational quantum circuits to process the quantum states generated from the image sub-regions

in the previous step.

0 is a free parameter that is optimized during training
0 0

CNOT 6 cos £ —sin
cate o RY (8) = exp (_Ziy) B (Sin 0 cos 92 )
RY

|
|
ql1] | 1oy ié & . 1 0 0 O] ’ 2
21 | 10) : CNOT = g (1) g 2
ql3] | 0y : o 0 01 0
| ! |

3. Measurement and decoding

The decoding process is achieved by measuring the qubits on the observables 0. The expectation value from multiple

measurements is deterministic. Based on this classical value, quantum convolutional layers can naturally couple with

the subsequent classical layers. £(0) = <¢|WT(9)6W(9) |¢>
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n Performance Comparison between QCNN and CNN

The Google quantum simulator based on Cirg and Tensorflow_quantum
Test a performance comparison between a single QCNN/CNN layer with 1, 2, and 4 convolutional kernels

Single Q/C ONV2D(filters = n, (2, 2), shape= (32*32)),
Flatten()
Dense(128, activation="relu’), Dense(2)

Adam learning_rate = 0.0001, batch_size = 16

The quantum circuit utilizes rotation gates with four
parameters, maintaining the same parameter level as a
2*2 classical convolutional kernel.

On small datasets, the QCNN demonstrates feature
extraction and learning capabilities comparable to those

of classical CNNs.
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For the /K identification on DTOF, we developed a CNN model based on original detector responses
and reconstructed features.
The CNN performance currently meets the physical requirements of STCF, but there is still room for

optimization at high momentum and large angle ranges.

Quantum machine learning is expected to provided new algorithm possibilities in high-energy physics
experiments due to potential quantum advantages.

A feasibility study on QML showed that QCNN and CNN perform similarly on small datasets.

Due to quantum resource limitations, comparisons have only been made on small-scale datasets.

Handling large-scale data remains a key advantage for classical machine learning.
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