

Multi-track reconstruction algorithm in the Mu2e experiment

Alessandro Maria Ricci¹*on behalf of the Mu2e Collaboration*

¹University of Pisa and INFN Section of Pisa

CHEP 2024, Krakow (Poland), 19-25 October 2024 Contact: [alessandro.ricci@df.unipi.it](mailto:alessandro.ricci@pi.infn.it)

The Mu2e experiment

Production Solenoid

• 8 GeV pulsed proton beam collides with a tungsten target producing π 's and K's that decay in μ 's.

Transport Solenoid

- It selects μ 's with $p < 100$ MeV/c.
- A rotating collimator selects the μ^+ or μ^- beam.

Detector Solenoid

- μ^- stop in the Al Stopping Target.
- Straw-tube tracker and crystal calorimeter detect the conversion e^- .
- Goal: Search for neutrino-less $\mu^{-}N \to e^{-}N$ coherent conversion in the field of Al nucleus, a charged lepton flavor violation (CLFV).
- Signature: almost monochromatic e^- of \sim 105 MeV/c, i.e., an event with single track.
- <u>Sensitivity</u>: $\Gamma_{\mu e}/\Gamma_{\mu\ can\ capture}$ ~10⁻¹⁷, four-order of magnitude better than the current limit set by SINDRUM II.

The Mu2e experiment

Production Solenoid

• 8 GeV pulsed proton beam collides with a tungsten target producing π 's and K's that decay in μ 's.

Transport Solenoid

- It selects μ 's with $p < 100$ MeV/c.
- A rotating collimator selects the μ^+ or μ^- beam.

Detector Solenoid

- μ^- stop in the Al Stopping Target.
- Straw-tube tracker and crystal calorimeter detect the conversion e^- .

There are motivations to develop an efficient tracking algorithm for reconstructing more simultaneous tracks:

- 1. To constrain the background generated by $p\bar{p}$ annihilation in Al target.
- 2. To search for Beyond the Standard Model processes.

The straw-tube tracker

- It is in a 1T uniform magnetic field ⇒ helicoidal particle trajectories.
- It consists of 18 tracking stations with 1152 straws per station.
- The straws are filled with 80% : 20% Ar : $CO₂$ mixture.
- The central hole reduces the number of straw hits produced from low-momentum particles.

Plane: 6 panels form a plane, 2 planes form a station.

Track reconstruction sequence

- The track reconstruction is divided in 4 sequential stages:
	- 1) Hit Reconstruction: raw signals are converted into position and time coordinates (straw hits).
	- 2) Time Clustering: hits close in time to each other are grouped together to create time clusters.
	- 3) Helix Finding: within each time cluster, hits consistent with a helix are grouped into helix seeds.
	- 4) Track Fit: the helix seeds are processed by a Kalman filter fit.

Track reconstruction sequence

- The track reconstruction is divided in 4 sequential stages:
	- 1) Hit Reconstruction: raw signals are converted into position and time coordinates (straw hits).
	- 2) Time Clustering: hits close in time to each other are grouped together to create time clusters.
		- The default clustering algorithm forms time clusters using a NN trained to efficiently search for a conversion e^- , but that removes a large fraction of π and μ hits.
		- It must be run with different configurations and trained each time for different physics searches \Rightarrow farraginous and time consuming.

• The new time clustering algorithm (TZClusterFinder) searches for lines in time vs z coordinate space, where z is the axis of the tracker:

- The new time clustering algorithm (TZClusterFinder) searches for lines in time vs z coordinate space, where z is the axis of the tracker:
	- 1. Combine hits in a tz -window (20 ns) to create pre-clusters. The window is considered to have a pre-cluster if contains more than 3 hits.

- The new time clustering algorithm (TZClusterFinder) searches for lines in time vs z coordinate space, where z is the axis of the tracker:
	- 1. Combine hits in a tz -window (20 ns) to create pre-clusters. The window is considered to have a pre-cluster if contains more than 3 hits.
	- 2. All possible pairs of pre-clusters that are within 30 ns of each other are tested together. The pair that yields the smallest χ^2/dof when the hits are fit to a linear line are permanently combined.

- The new time clustering algorithm (TZClusterFinder) searches for lines in time vs z coordinate space, where z is the axis of the tracker:
	- 1. Combine hits in a tz -window (20 ns) to create pre-clusters. The window is considered to have a pre-cluster if contains more than 3 hits.
	- 2. All possible pairs of pre-clusters that are within 30 ns of each other are tested together. The pair that yields the smallest χ^2/dof when the hits are fit to a linear line are permanently combined.
	- 3. Hits that have been missed but are within 30 ns of line fit of the pre-cluster are recovered.
	- 4. The obtained pre-cluster is considered a tz-cluster.

Shortcomings of the simple t-z clustering

- The tz -clusters are inhomogeneous and contain hits of different particles.
- In many cases, they do not result in a reconstructed track.
- The hits produced by different particles with the same initial time and longitudinal speed overlap in the tz -plane. Hence, if the tracks are simultaneous, the tz -plane is not sufficient to disentangle them.

Example of event in which the hits coming from two π 's produced from a $p\bar{p}$ -annihilation can not be adequately distinguished in tz -plane.

Solution in the ϕ z-plane

• Additional information is provided by the hit azimuthal angle:

$$
\phi = \tan^{-1} \frac{y}{x}
$$

• Hits produced by synchronous particles having different angular velocity or initial azimuthal angle (ϕ_0) look well separated in the ϕz -plane.

• The algorithm then rejects the tz clusters that cannot do not correspond to a track:

- The algorithm then rejects the tz clusters that cannot do not correspond to a track:
	- 1. Select the pairs of neighboring stations with at least 2 straw hits per station.

- The algorithm then rejects the tz clusters that cannot do not correspond to a track:
	- 1. Select the pairs of neighboring stations with at least 2 straw hits per station.
	- 2. For each station of the pair, using each straw hit as center, search a "rectangle" containing at least 2 hits in the ϕZ -plane.

$$
\Box \int \Delta \phi_1 = 0.4 \, rad
$$

$$
\Delta z = station\ thickness
$$

- The algorithm then rejects the tz clusters that cannot do not correspond to a track:
	- 1. Select the pairs of neighboring stations with at least 2 straw hits per station.
	- 2. For each station of the pair, using each straw hit as center, search a "rectangle" containing at least 2 hits in the ϕZ -plane.
	- 3. Check if the angular distance between the centers of the rectangles $\Delta \phi_2 \leq 0.6$ rad.

- $\bullet\;$ The algorithm then rejects the tz clusters that cannot do not correspond to a track:
	- 1. Select the pairs of neighboring stations with at least 2 straw hits per station.
	- 2. For each station of the pair, using each straw hit as center, search a "rectangle" containing at least 2 hits in the ϕZ -plane.
	- 3. Check if the angular distance between the centers of the rectangles $\Delta\phi_2\leq 0.6$ rad.
	- 4. Searches for a third station near the pair of neighboring stations with at least one hit within $\Delta \phi_2.$
- \bullet tz -clusters with less than 3 stations so connected are rejected.

Hits belonging to the same tz -cluster. Boxes indicate the tracker panels. Straw hits are indicated by the stars.

 ϕ (rad)

- The algorithm recognizes the clusters that contain more tracks and split them in ϕ z-clusters:
	- 1. Project the tz-cluster hits in the ϕ coordinate on a histogram.
	- 2. Find the peak bin and goes through the bins around it with content > 1 .
	- 3. This gives ϕ_{min} and ϕ_{max} for a precluster.
	- 4. Put the hits with ϕ between ϕ_{min} and ϕ_{max} in the pre-cluster.
	- 5. If the pre-cluster has > 10 straw hits, it is considered a ϕ z-cluster.
	- 6. Repeat the above procedure for the rest of the hits in the tz -cluster.

Results

- When the multi-track clustering algorithm is applied to simulated $\mu^-\rightarrow e^-$ events with beam pile-up, it selects the 99.2% of tz -clusters containing hits of the conversion e^- .
- When it is applied to $p\bar{p}$ -annihilations simulated with beam pile-up, it selects 90% of the tz -clusters produced by the $p\bar{p}$ -annihilation products.
- It rejects 77% of the tz-clusters that do not contain these processes.
- It reconstructs about 42% of the multi-track events from $p\bar{p}$ annihilation, where each track has a total momentum > 80 MeV/c and makes at least 20 hits in the tracker. Compared to the default reconstruction, the number of multi-track events increased by 2.1 times.
- The illustration depicts an event of $p\bar p$ -annihilation, where the singletrack optimized algorithm fails to reconstruct one of the two tracks, whereas the multi-track algorithm successfully reconstructs both.

Single-track algorithm

19 Multi-track algorithm

Conclusions

- The Mu2e experiment will search for neutrino-less $\mu^- N \to e^- N$ coherent conversion in the field of Al nucleus, a charged lepton flavor violation (CLFV).
- The signature is a monochromatic e^- of \sim 105 MeV/c, i.e., an event with single track.
- There are motivations to develop an efficient tracking algorithm for reconstructing more simultaneous tracks:
	- 1. To constrain the background generated by $p\bar{p}$ -annihilation in Al target.
	- 2. To search for Beyond the Standard Model processes.
- The default Mu2e algorithm forms time clusters using a NN trained to efficiently search for a conversion e^- , but that removes a large fraction of π and μ hits.
- The new clustering algorithms form the hit clusters searching for the straight lines in both the tz and the ϕ z-coordinate spaces.
- When the ϕ z-clusters are used to feed the track reconstruction algorithm, the number of multi-track reconstructed events increases by 2.1 times.

Backup

Goal of the Mu2e experiment

- Search for neutrino-less $\mu^- N \to e^- N$ coherent conversion in the field of Al nucleus, a charged lepton flavor violation (CLFV).
- The conversion probability is given by the ratio between the $\mu^- \to e^-$ conversion rate and the nuclear capture rate:

$$
R_{\mu e} = \frac{\Gamma(\mu^{-} + N(Z, A) \to e^{-} + N(Z, A))}{\Gamma(\mu^{-} + N(Z, A) \to \nu^{-} + N(Z - 1, A))}
$$

- Signature: monochromatic e^- of 104.97 MeV/c.
- If no signal is observed, the upper limit will be $R_{\mu e}$ < 8 × 10⁻¹⁷ at 90% CL, a four-order of magnitude improvement over the current limit set by SINDRUM II experiment.

Default time clustering algorithm

- Time clustering sequence:
	- 1. Find peaks in the hit time distribution.
	- 2. Associate hits to "time peaks", hits must be within few nanoseconds of the time peak.
	- 3. Use a MVA (NN) to remove pile-up hits from the time cluster.
	- 4. Use another MVA (NN) to recover hits that were slightly outside the time peak window.
- Issues with the multi-track reconstruction:
	- It can not reconstruct several tracks within the same time peak (simultaneous tracks).
	- It forms time clusters using a NN trained to efficiently search for a conversion e^- , but that accidentally removes a large fraction of π and μ hits.
	- In some instances, NN reduce the speed of the reconstruction. In some instances, all hits that were removed by the first NN were added back by the second NN.
	- It must be run with different configurations and trained each time for different physics searches ⇒ farraginous and time consuming.