
LLMs for Enhanced Code Review
Alexey Rybalchenko, Mohammad Al-Turany
GSI Helmholtz Centre for Heavy Ion Research GmbH, Darmstadt, Germany

GSI Helmholtz Centre for Heavy Ion Research GmbH, Darmstadt, Germany

Collaborative software development demands 
rigorous code review processes to ensure 

maintainability, reliability, and efficiency. We 
integrate Large Language Models (LLMs) into the 

code review process, utilizing both commercial 
and open models. We present a comprehensive 

code review workflow that incorporates 
open-weights LLMs, integrating various 

enhancements such as multi-agent capabilities 
and reflection. By harnessing the capabilities of 
LLMs, the review process can uncover faults and 

identify improvements that traditional automated 
analysis tools may overlook. This integration 

shows promise for improving code quality and 
reducing errors. We deploy coderabbit.ai for 
commercial models & develop our own tool - 

pearbot for usage with local models.

ollama[3] (via python lib and HTTP request): open-source 
large language model server, written in Go, backed by 

llama.cpp[4] (C++):
● Efficient serving of large language models
● CPU/GPU/CPU+GPU hybrid inference to partially 

accelerate models larger than the total VRAM capacity
● Supports many model architectures:

llama, gemma2, qwen2, …
● Support for multitude of model quantization techniques 

and precisions for faster inference and reduced memory 
use

● Usage Metrics

Pearbot

Features

exploration in future work

Pearbot: Refining the Context

LLM 

Review Strengths
Pearbot

Instructions

LLM 

Review Weaknesses

References:
[1] https://github.com/GSI-HPC/pearbot
[2] https://coderabbit.ai/
[3] https://ollama.com/
[4] https://github.com/ggerganov/llama.cpp

[5] Li, Junyou, et al. "More agents is all you need." arXiv preprint arXiv:2402.05120 (2024). https://doi.org/10.48550/arXiv.2402.05120
[6] Madaan, Aman, et al. "Self-refine: Iterative refinement with self-feedback." Advances in Neural Information Processing Systems 36 (2024). https://doi.org/10.48550/arXiv.2303.17651
[7] Shinn, Noah, et al. "Reflexion: Language agents with verbal reinforcement learning." Advances in Neural Information Processing Systems 36 (2024). https://doi.org/10.48550/arXiv.2303.11366
[8] Wei, Jason, et al. "Chain-of-thought prompting elicits reasoning in large language models." Advances in neural information processing systems 35 (2022): 24824-24837. https://doi.org/10.48550/arXiv.2201.11903

#201

Adding relevant context to the LLM query can enhance the 
quality and relevance of the review. For example:

- Related issues and their summaries.
- Coding standards/guidelines excerpts.
- Historical code changes of the corresponding code.
- Experiment & Framework-specific coding conventions.

To select relevant information for the context and to avoid 
overloading context size of the model, relevant parts 
should be selected. One current technique to achieve this 
is Graph Retrieval-Augmented Generation (GraphRAG):

1. Knowledge Graph Construction:
○ entities & relationships representing the project's 

code, issues & guidelines
2. Contextual Retrieval:

○ traverse the knowledge graph to find relevant nodes
○ Use similarity measures and relationship strengths 

to rank the importance of related context.

● May produce unnecessary output, when no actionable 
changes are necessary or such are not detected by the 
model, which would waste developer’s time.

● Weaker models, especially with quantized weights, 
may more easily dive into hallucinations, potentially 
leading to inaccurate or irrelevant code suggestions.

● Limited understanding of complex projects, which 
human reviewers inherently possess.

● Potential for false positives, flagging issues that aren't 
actually problematic.

● Inability to fully comprehend the broader architectural 
implications of code changes, especially in large, 
complex systems.

CodeRabbit [2]:Pearbot [1]:

● AI-based Pull Request summarizer and reviewer with 
chat capabilities via a Github/Gitlab App.

● Combination of various OpenAI models.
● Previously open source, now a closed project.
● Free to use for open source projects.

Pearbot

Backend

LLM query
- instructions
- PR description
- additional context
- code changes

● GitHub App for reviewing Pull Requests.
● Local execution mode for diffs or annotated commits.
● Agent ensemble approach for comprehensive 

analysis:
○ initial reviews with any number of different models
○ followed by a final model to refine the initial 

reviews
● Customizable model(s) via the ollama setup.
● Execution on low-end hardware and/or without GPU.
● Customizable prompt(s).

As a GitHub App:
python pearbot.py --server

To analyze a local diff file:

python pearbot.py --diff path/to/your/diff/file

Or pipe a diff directly:

git diff | python pearbot.py

Generate detailed output with commit messages, e.g.:

git format-patch HEAD~3..HEAD --stdout | python pearbot.py

● Unbiased, 24/7, scalable, multi-lingual, customizable, 
with a broad knowledge base, can be kept up-to date 
with new data.

● Good at identifying logical errors early, that other 
automated tools or even human review may overlook, 
avoiding issues later in the project lifetime.

● Can potentially reduce the time and resources needed for 
code reviews.

1. Multi-Agent[5] Initial Reviews:
○ Multiple AI models generate initial code reviews.
○ Each model provides a unique perspective on the code 

changes.
○ This approach gathers a diverse set of potential issues 

and improvements.
2. Reflection[6][7] by a Final Agent:

○ A separate, possibly more advanced, model analyzes 
the initial reviews.

○ This agent synthesizes and refines the feedback from 
multiple sources, rejects potentially less impactful 
comments.

○ It prioritizes the most important issues and 
suggestions.

○ The reflection step helps in producing a more 
comprehensive and coherent final review.

3. Good Review Examples:
○ Specific & useful code review examples, which 

encourages specific type of reply, guiding the agents.
○ Examples include Chain-of-Thought[7] type of 

reviews, that include some reasoning why the 
suggestions would be good.

○ Models are prompted to think through the 
implications of changes.

LLM

Boost Strengths, Reduce Weaknesses
Allowing independent AI agents to generate separate 
reviews, followed by a final AI reviewer's synthesis, can 
improve the response quality. At the same time, the 
system should filter out superfluous reviews, presenting 
only relevant insights to the user, or none at all when 
there are none.


