
XKIT:

XRootD
Kubernetes
Integration
Testing

Rob Currie, Wenlong Yuan

CHEP 2024

21st October 2024

Motivations for XRootD Integration Testing

Illinois S. Dakota

2

Rob’s opinion: similar situation to when he worked on another grid project Ganga.

1. Large tool with large codebase & many uses.

2. Many communities using it to solve their problems.

3. Works extremely well.

4. Highly configurable with many plugins.

5. Not every community is running bleeding edge clients/versions.
 (some communities are better than others)

• Testing is difficult because the phase-space is so large.

• Unit-testing != Code Analysis != Integration Testing

> 3 large dimensions; client version, server version & network topology
> many compact dimensions, plugins options, server options, expected pass/fail

Setting the Scene

• Larger UK grid sites use XRootD in different ways

• 5 large UK Tier 2 site configs, all similar, but none the same.

• Supporting different users, different release versions, different plugins
combinations, …
 e.g: v4 client <-> v5 server using vector reads
 vs: 3rd party copy v5 <-> dCache …

• Question that has come up in testing:

“What was the ‘golden’ release/plugin version which worked for user X?”

3

UK Grid Software Deployments

1. Grid site performs an install, does simple tests, possibly with a small test queue.

2. Local & Remote VO experts check that everything is working as expected.

3. Ideally, small problems then involve 3-4 people who may not be low-level experts.

4. Issues impacting users tend to involve more people, take more effort …

• Want to reduce person-power/effort needed to verify new packages for production
configurations.

• Virtual site deployments which ‘look like’ real-world sites reduces effort needed for 2.

4

How much do we want to test?

5

How much do we want to test?

6

How much do we want to test?

The topology of a “typical XRootD

install” seems to vary even within UK.

Would be good to try and identify the

key components of this.

Want to test/check/know-how-to-use

all features and best practice(s).

7

Test Management
• XRootD Integration Testing requires 2 parts:

Client:
 → Test cmdline tools (xrdcp, xrdfs, …)

 → Test Python3 client API(s)

 → Double-check everything works as expected

 → Might aim test the C++ API (something closer to user-code in HEP)

Server:
 → Want to verify server behaviour (logs/output)

 → Want to test read/write transfers work as expected

 → Check server-side features configs haven’t changed

Containers to the Rescue!

XRootD Package/Image Management
• XRootD is already used in Containers, but we want a minimal container for testing!

We are now ‘rolling our own’ container-images:

1. Using the rpm build recipe from the XRootD github repo
(standing on the shoulders of giants!)

2. Built rpms from source on Alma9 base image(s)

3. Packages installed via dnf with all normal extensions for XRootD and dependencies

4. Image is tagged with release version

5. New images published to dockerhub

6. No security/configuration/gremlins baked into images

Deploying these containers means we have additional runtime control how we mount in
CRL/config/data/cute-cuddly-kittens from our host into the container.

IF someone else is

doing a better job we

can use their base

images(!).

Service Management
• OK, now we have an image, so can launch containers/run-tests.

• We started with docker-compose to manage multiple services.

• This ended quickly.

• Setting up a single transfer of:

 POSIX → PFC → Destination DNS gets annoying

• Docker/Podman(-compose) aren’t friendly to mocking real world security
setups.

This is a shame; we’re making use of docker-compose a LOT at our site.

“Let’s fix the problem of complex container management, with… more containers!”

Service Management (2)

• Each XRootD service needs the following:

✓CRL/VOMS mounted/updated from host

✓Server config mounted from host

✓Test data mounted from host *

✓DNS entries pointing to instance

✓Hostcert mounted from host (per-instance)

✓External network connectivity

• After evaluating a few options, we decided to go with Kubernetes

“There’s an API for that!”

• Almost everything “speaks” Python3 these days.
(The less we code, the less we debug, trying to keep things minimal)

• Kubernetes, Docker, S3, OpenSearch, Django, …

• Most of the ‘heavy lifting’ for projects like this has been done for us.

• With that in mind, we decided to start working out what to do.

• Not all work is in Python3… but enough.

It’s time for the running tests!

The Plan…

What do we have so far?
Containers on

DockerHub
Test Client & Server

logfiles on (private!) S3

Test Metadata,

success/fail,

timestamps, …

(Not bad for <100 lines of Python!)

What do we have so far?

• Simple, entirely dynamically generated web-UI.
Not yet public, plan to ‘hide’ host behind an OAuth login.

• Using a github organization for managing the various pieces of this:
https://github.com/gridpp-Edi

• Tests repo:

https://github.com/gridpp-Edi/xrootd-ci-tests

• Server configs repo:

https://github.com/gridpp-Edi/xrootd-helm-charts

We aim to publish and share all ASAP.

https://github.com/gridpp-Edi
https://github.com/gridpp-Edi/xrootd-ci-tests
https://github.com/gridpp-Edi/xrootd-helm-charts

From the Site’s Perspective

• On the face of it, this has lots of moving parts:
• DNS, VOMS, Kubernetes, multiple new systems to update/maintain, s3,

OpenSearch/ElasticSearch, message queues, credentials…

• However, these services are being re-used by some other project.

• Work on this allows us to:
• Support the in-development protoDUNE DAQ offline monitoring

• Support DUNE-DM monitoring

• Support GridPP-FTS monitoring

• Support UoE PPE-Labs clean-room certification

• Gain valuable experience with Kubernetes

• Support GridPP storage efforts

Conclusions

• Successfully run initial tests against XRootD using our ‘pipeline’.

 - Data transfers in/out of ‘Virtual site’ using containers.

• Have worked out most of the annoying bits in setting this up.

• Have a minimal web-UI which we aim to share ASAP.

Conclusions – Next Steps

• Need to expand our testing topology (helm charts).

 - So far have server-side configs for simple XRD-POSIX and XRD-PFC.
 - Only testing X509 auth but want to do more.

• Need to flesh out some additional tests.

 - Successfully written/read data from POSIX via different API.
 - Want to automatically test 3rd-party copy between endpoints, internal and external.

• Plan to integrate with higher-level testing system for tracking different
client/server tests and outputs.

	Slide 1: XKIT: XRootD Kubernetes Integration Testing
	Slide 2: Motivations for XRootD Integration Testing
	Slide 3: Setting the Scene
	Slide 4: UK Grid Software Deployments
	Slide 5: How much do we want to test?
	Slide 6: How much do we want to test?
	Slide 7: How much do we want to test?
	Slide 8: Test Management
	Slide 9: XRootD Package/Image Management
	Slide 10: Service Management
	Slide 11: Service Management (2)
	Slide 12: “There’s an API for that!”
	Slide 13: The Plan…
	Slide 14: What do we have so far?
	Slide 15: What do we have so far?
	Slide 16: From the Site’s Perspective
	Slide 17: Conclusions
	Slide 18: Conclusions – Next Steps

