
Kyle J. Knoepfel
22 October 2024
CHEP 2024

Multi-package development at Fermilab with Spack

Spack adoption at Fermilab

Oct. 2024 Kyle J. Knoepfel | MPD at Fermilab with Spack2

https://spack.io

Spack is the supercomputing package manager.
It has gained widespread traction across the HPC community and within HEP
Spack is now part of the High-Performance Software Foundation (https://hpsf.io)

https://spack.io/
https://hpsf.io/

Spack adoption at Fermilab

Oct. 2024 Kyle J. Knoepfel | MPD at Fermilab with Spack3

https://spack.io

Spack is the supercomputing package manager.
It has gained widespread traction across the HPC community and within HEP
Spack is now part of the High-Performance Software Foundation (https://hpsf.io)

Fermilab decided to switch to Spack for several reasons:
Constraints on effort to maintain Fermilab-specific package manager
Take advantage of technology provided by the broader computing community
Engage and influence the broader computing community

https://spack.io/
https://hpsf.io/

Spack is the supercomputing package manager.
It has gained widespread traction across the HPC community and within HEP
Spack is now part of the High-Performance Software Foundation (https://hpsf.io)

Fermilab decided to switch to Spack for several reasons:
Constraints on effort to maintain Fermilab-specific package manager
Take advantage of technology provided by the broader computing community
Engage and influence the broader computing community

Fermilab progress in the last few years:
Proof-of-principle installation of all offline code for DUNE, Mu2e, etc.
Joined Spack’s technical steering committee
Establishing process for layered releases/environments of Fermilab-supported software
Created solution for building CMake packages together in a Spack context

Spack adoption at Fermilab

Oct. 2024 Kyle J. Knoepfel | MPD at Fermilab with Spack4

https://spack.io

https://hpsf.io/
https://spack.io/

Simplified dependency graphMany experiments at Fermilab share software.
It is common for an experiment to develop their own
code at the same time as adjusting a piece of shared
software.

Developing multiple repositories together

Oct. 2024 Kyle J. Knoepfel | MPD at Fermilab with Spack5

Simplified dependency graphMany experiments at Fermilab share software.
It is common for an experiment to develop their own
code at the same time as adjusting a piece of shared
software.
Most of these bodies of software are CMake
packages, which can often be built together as a
larger CMake project.
For the past decade, this has been done at Fermilab
with the multi-repository build (MRB) system.

Developing multiple repositories together

Oct. 2024 Kyle J. Knoepfel | MPD at Fermilab with Spack6

Simplified dependency graphMany experiments at Fermilab share software.
It is common for an experiment to develop their own
code at the same time as adjusting a piece of shared
software.
Most of these bodies of software are CMake
packages, which can often be built together as a
larger CMake project.
For the past decade, this has been done at Fermilab
with the multi-repository build (MRB) system.

Developing multiple repositories together

Oct. 2024 Kyle J. Knoepfel | MPD at Fermilab with Spack7

As successful as MRB has been in building repositories in concert, it relies heavily on
Fermilab’s home-grown package management system (UPS).
Fermilab is pursuing a Spack-based approach for developing multiple repositories.

Fermilab has tried different approaches for replacing MRB:
1. FNAL-created spack dev extension

LArSoft minimum viable product released in 2019; experiments were not ready to explore it.

Code development using Spack

Oct. 2024 Kyle J. Knoepfel | MPD at Fermilab with Spack8

Fermilab has tried different approaches for replacing MRB:
1. FNAL-created spack dev extension

LArSoft minimum viable product released in 2019; experiments were not ready to explore it.

2. Spack-provided feature spack develop
Well-integrated with Spack installations
Supports development of any Spack package
More Spack expertise required of users, and substantial inefficiencies in incremental builds

Code development using Spack

Oct. 2024 Kyle J. Knoepfel | MPD at Fermilab with Spack9

Fermilab has tried different approaches for replacing MRB:
1. FNAL-created spack dev extension

LArSoft minimum viable product released in 2019; experiments were not ready to explore it.

2. Spack-provided feature spack develop
Well-integrated with Spack installations
Supports development of any Spack package
More Spack expertise required of users, and substantial inefficiencies in incremental builds

3. FNAL-created spack mpd (MPD) extension
Allows users to develop CMake packages in concert with Spack-provided software
Tailored for iterative algorithm development
Try to give a familiar feel to MRB…but not too familiar

Code development using Spack

Oct. 2024 Kyle J. Knoepfel | MPD at Fermilab with Spack10

https://github.com/FNALssi/spack-mpd

https://github.com/FNALssi/spack-mpd

Spack interactions
• Minimize user’s required knowledge of Spack
• Take advantage of packages installed in upstream Spack instances/environments
• Directly support the installation of dependencies

 This was not feasible with UPS
 Must avoid rebuilding dependencies with existing installations

Usability
• Easy to setup an MPD development session
• Easy to switch between my MPD projects

 Avoid reliance on environment variables
• Easy to list which MPD projects are available to you

Desired features of MPD

Oct. 2024 Kyle J. Knoepfel | MPD at Fermilab with Spack11

Spack MPD commands

Oct. 2024 Kyle J. Knoepfel | MPD at Fermilab with Spack12

$ spack mpd -h
usage: spack mpd [-hV] SUBCOMMAND ...

develop multiple packages using Spack for external software

positional arguments:
 SUBCOMMAND
 build (b) build repositories
 clear clear selected MPD project
 git-clone (g, clone)
 clone git repositories
 deploy (d) deploy developed packages
 init initialize MPD on this system
 install (i) install built repositories
 list (ls) list MPD projects
 new-project (n, newDev)
 create MPD development area
 refresh refresh project
 rm-project (rm) remove MPD project
 select select MPD project
 status current MPD status
 test (t) build and run tests
 zap (z) delete everything in your build and/or install areas

optional arguments:
 -V, --version print MPD version (0.1.0) and exit
 -h, --help show this help message and exit

Spack MPD commands

Oct. 2024 Kyle J. Knoepfel | MPD at Fermilab with Spack13

$ spack mpd -h
usage: spack mpd [-hV] SUBCOMMAND ...

develop multiple packages using Spack for external software

positional arguments:
 SUBCOMMAND
 build (b) build repositories
 clear clear selected MPD project
 git-clone (g, clone)
 clone git repositories
 deploy (d) deploy developed packages
 init initialize MPD on this system
 install (i) install built repositories
 list (ls) list MPD projects
 new-project (n, newDev)
 create MPD development area
 refresh refresh project
 rm-project (rm) remove MPD project
 select select MPD project
 status current MPD status
 test (t) build and run tests
 zap (z) delete everything in your build and/or install areas

optional arguments:
 -V, --version print MPD version (0.1.0) and exit
 -h, --help show this help message and exit

Project commands
Commands that establish a user
environment for developing a
given project.

Spack MPD commands

Oct. 2024 Kyle J. Knoepfel | MPD at Fermilab with Spack14

$ spack mpd -h
usage: spack mpd [-hV] SUBCOMMAND ...

develop multiple packages using Spack for external software

positional arguments:
 SUBCOMMAND
 build (b) build repositories
 clear clear selected MPD project
 git-clone (g, clone)
 clone git repositories
 deploy (d) deploy developed packages
 init initialize MPD on this system
 install (i) install built repositories
 list (ls) list MPD projects
 new-project (n, newDev)
 create MPD development area
 refresh refresh project
 rm-project (rm) remove MPD project
 select select MPD project
 status current MPD status
 test (t) build and run tests
 zap (z) delete everything in your build and/or install areas

optional arguments:
 -V, --version print MPD version (0.1.0) and exit
 -h, --help show this help message and exit

Project commands
Commands that establish a user
environment for developing a
given project.

Development commands
Standard commands for
development after a user
environment has been set up for
a given project.

Spack MPD commands

Oct. 2024 Kyle J. Knoepfel | MPD at Fermilab with Spack15

$ spack mpd -h
usage: spack mpd [-hV] SUBCOMMAND ...

develop multiple packages using Spack for external software

positional arguments:
 SUBCOMMAND
 build (b) build repositories
 clear clear selected MPD project
 git-clone (g, clone)
 clone git repositories
 deploy (d) deploy developed packages
 init initialize MPD on this system
 install (i) install built repositories
 list (ls) list MPD projects
 new-project (n, newDev)
 create MPD development area
 refresh refresh project
 rm-project (rm) remove MPD project
 select select MPD project
 status current MPD status
 test (t) build and run tests
 zap (z) delete everything in your build and/or install areas

optional arguments:
 -V, --version print MPD version (0.1.0) and exit
 -h, --help show this help message and exit

Project commands
Commands that establish a user
environment for developing a
given project.

Development commands
Standard commands for
development after a user
environment has been set up for
a given project.

Usability
Helper commands to let you
know what you can do and what
you’re doing.

Spack MPD commands

Oct. 2024 Kyle J. Knoepfel | MPD at Fermilab with Spack16

$ spack mpd -h
usage: spack mpd [-hV] SUBCOMMAND ...

develop multiple packages using Spack for external software

positional arguments:
 SUBCOMMAND
 build (b) build repositories
 clear clear selected MPD project
 git-clone (g, clone)
 clone git repositories
 deploy (d) deploy developed packages
 init initialize MPD on this system
 install (i) install built repositories
 list (ls) list MPD projects
 new-project (n, newDev)
 create MPD development area
 refresh refresh project
 rm-project (rm) remove MPD project
 select select MPD project
 status current MPD status
 test (t) build and run tests
 zap (z) delete everything in your build and/or install areas

optional arguments:
 -V, --version print MPD version (0.1.0) and exit
 -h, --help show this help message and exit

Project commands
Commands that establish a user
environment for developing a
given project.

Development commands
Standard commands for
development after a user
environment has been set up for
a given project.

Usability
Helper commands to let you
know what you can do and what
you’re doing.

Initialization
Once per Spack instance

Development workflow

Oct. 2024 Kyle J. Knoepfel | MPD at Fermilab with Spack17

Create new project $ spack mpd new-project --name my-art-devel -T my-art-devel -E gcc-14-1 cxxstd=20 %gcc@14

==> Creating project: my-art-devel

Using build area: /scratch/knoepfel/my-art-devel/build
Using local area: /scratch/knoepfel/my-art-devel/local
Using sources area: /scratch/knoepfel/my-art-devel/srcs

==> You can clone repositories for development by invoking

 spack mpd git-clone --suite <suite name>

 (or type 'spack mpd git-clone --help' for more options)

Development workflow

Oct. 2024 Kyle J. Knoepfel | MPD at Fermilab with Spack18

Create new project

Clone repositories $ spack mpd git-clone --fork cetlib cetlib-except hep-concurrency

==> Cloning and forking:

 cetlib done (cloned, added fork knoepfel/cetlib)
 cetlib-except done (cloned, created fork knoepfel/cetlib-except)
 hep-concurrency done (cloned, created fork knoepfel/hep-concurrency)

==> You may now invoke:

 spack mpd refresh

$ spack mpd new-project --name my-art-devel -T my-art-devel -E gcc-14-1 cxxstd=20 %gcc@14

==> Creating project: my-art-devel

Using build area: /scratch/knoepfel/my-art-devel/build
Using local area: /scratch/knoepfel/my-art-devel/local
Using sources area: /scratch/knoepfel/my-art-devel/srcs

==> You can clone repositories for development by invoking

 spack mpd git-clone --suite <suite name>

 (or type 'spack mpd git-clone --help' for more options)

Development workflow

Oct. 2024 Kyle J. Knoepfel | MPD at Fermilab with Spack19

Refresh project $ spack mpd refresh

==> Refreshing project: my-art-devel

...

==> Concretizing project (this may take a few minutes)
==> Environment my-art-devel has been created
==> Updating view at /scratch/knoepfel/spack/var/.../my-art-devel/.spack-env/view
==> Concretization complete

Concretization is
when Spack looks for
a set of package
specifications that
satisfy dependency
requirements.

Development workflow

Oct. 2024 Kyle J. Knoepfel | MPD at Fermilab with Spack20

Refresh project $ spack mpd refresh

==> Refreshing project: my-art-devel

...

==> Concretizing project (this may take a few minutes)
==> Environment my-art-devel has been created
==> Updating view at /scratch/knoepfel/spack/var/.../my-art-devel/.spack-env/view
==> Concretization complete

==> Ready to install MPD project my-art-devel

==> Would you like to continue with installation? [Y/n]
==> Specify number of cores to use (default is 12)
==> Installing my-art-devel

Concretization is
when Spack looks for
a set of package
specifications that
satisfy dependency
requirements.

The installation step
installs only the
dependencies of the
packages being
developed.

Development workflow

Oct. 2024 Kyle J. Knoepfel | MPD at Fermilab with Spack21

Refresh project $ spack mpd refresh

==> Refreshing project: my-art-devel

...

==> Concretizing project (this may take a few minutes)
==> Environment my-art-devel has been created
==> Updating view at /scratch/knoepfel/spack/var/.../my-art-devel/.spack-env/view
==> Concretization complete

==> Ready to install MPD project my-art-devel

==> Would you like to continue with installation? [Y/n]
==> Specify number of cores to use (default is 12)
==> Installing my-art-devel
[+] /usr (external glibc-2.34-hjl43avhawltutkgujn2ns3577kjowlq)

...

[+] /scratch/knoepfel/spack/.../intel-tbb-2021.9.0-gtkaoizm5i4m6goy7rptg7v3i5q2jrg7

==> MPD project my-art-devel has been installed. To load it, invoke:

 spack env activate my-art-devel

Concretization is
when Spack looks for
a set of package
specifications that
satisfy dependency
requirements.

The installation step
installs only the
dependencies of the
packages being
developed.

Development workflow

Oct. 2024 Kyle J. Knoepfel | MPD at Fermilab with Spack22

Activate environment
Build

$ spack env activate my-art-devel
$ spack mpd build -G Ninja -j12

Development workflow

Oct. 2024 Kyle J. Knoepfel | MPD at Fermilab with Spack23

Activate environment
Build

$ spack env activate my-art-devel
$ spack mpd build -G Ninja -j12

==> Configuring with command:

cmake --preset default /scratch/knoepfel/my-art-devel/srcs ...

Preset CMake variables:

 CMAKE_BUILD_TYPE:STRING="RelWithDebInfo"
 ...

-- Found TBB: /.../lib64/cmake/TBB/TBBConfig.cmake (found version "2021.9.0")
-- The C compiler identification is GNU 14.1.0
...
-- Configuring done (2.2s)
-- Generating done (0.2s)
-- Build files have been written to: /home/knoepfel/scratch/my-art-devel/build

==> Building with command:

cmake --build /scratch/knoepfel/my-art-devel/build -- -j12

[0/2] Re-checking globbed directories...
[278/278] Linking CXX executable cetlib/bin/ntuple_t

CMake
configuration

Build

Development workflow

Oct. 2024 Kyle J. Knoepfel | MPD at Fermilab with Spack24

Test $ spack mpd test -j12

==> Testing with command:

ctest --test-dir /scratch/knoepfel/my-art-devel/build -j12

Internal ctest changing into directory: /home/knoepfel/scratch/my-art-devel/build
Test project /home/knoepfel/scratch/my-art-devel/build
 Start 1: coded_exception_test
 Start 2: demangle_t
 Start 3: exception_collector_test
 Start 4: exception_test
 Start 5: exception_category_matcher_t
 Start 6: exception_message_matcher_t
 Start 7: exception_bad_append_t
 Start 8: runThreadSafeOutputFileStream_t.sh
 Start 9: assert_only_one_thread_test
 Start 10: serial_task_queue_chain_t
 Start 11: serial_task_queue_t
 Start 12: waiting_task_list_t
 1/100 Test #1: coded_exception_test Passed 0.01 sec
...
100/100 Test #55: cpu_timer_test Passed 0.55 sec

100% tests passed, 0 tests failed out of 100

Helper commands

Oct. 2024 Kyle J. Knoepfel | MPD at Fermilab with Spack25

$ spack mpd status
==> Selected project: my-art-devel
 Environment status: active

Status

Helper commands

Oct. 2024 Kyle J. Knoepfel | MPD at Fermilab with Spack26

$ spack mpd status
==> Selected project: my-art-devel
 Environment status: active

$ spack mpd ls

==> Existing MPD projects:

 Project name Environment Deployed environment
 ---------------- ----------- --------------------
 art-devel (none) (none)
 meld-devel installed (none)

 u my-art-devel active (none)
 my-larsoft-devel created (none)

 t test-devel (none) (none)

Status

List projects available to me

Selected in this shell

Selected in another shell

Helper commands

Oct. 2024 Kyle J. Knoepfel | MPD at Fermilab with Spack27

$ spack mpd status
==> Selected project: my-art-devel
 Environment status: active

$ spack mpd ls

==> Existing MPD projects:

 Project name Environment Deployed environment
 ---------------- ----------- --------------------
 art-devel (none) (none)
 meld-devel installed (none)

 u my-art-devel active (none)
 my-larsoft-devel created (none)

 t test-devel (none) (none)

Status

List projects available to me

Selected in this shell

Selected in another shell

$ spack mpd select test-devel
==> Warning: Project test-devel selected in another shell. Use with caution.

Switch MPD Projects

• Each repository you want to develop must have a Spack recipe
The recipe does not need to be part of the Spack mainline repository.
Spack has tools to help you create package recipes.

Caveats

Oct. 2024 Kyle J. Knoepfel | MPD at Fermilab with Spack28

• Each repository you want to develop must have a Spack recipe
The recipe does not need to be part of the Spack mainline repository.
Spack has tools to help you create package recipes.

• MPD does not use Spack to build the repositories under development
Spack forms an environment of dependencies used for building the repositories.
MPD automatically configures CMake to build the repositories together.

Caveats

Oct. 2024 Kyle J. Knoepfel | MPD at Fermilab with Spack29

• Each repository you want to develop must have a Spack recipe
The recipe does not need to be part of the Spack mainline repository.
Spack has tools to help you create package recipes.

• MPD does not use Spack to build the repositories under development
Spack forms an environment of dependencies used for building the repositories.
MPD automatically configures CMake to build the repositories together.

• Minimize use of environment variables
Spack recipes can (and do) set environment variables during the build and run stages. But
when building that code outside of Spack, those variables need to be set in a different way.
Best to find alternatives to environment variables
Better insulates each MPD project from each other

Caveats

Oct. 2024 Kyle J. Knoepfel | MPD at Fermilab with Spack30

• Fermilab is switching from its custom package manager to Spack.
• Multi-package development with Spack will be achieved with the MPD extension.
• MPD is ready for beta-testing.

Pull requests and bug reports at https://github.com/FNALssi/spack-mpd are welcome.

Conclusions

Oct. 2024 Kyle J. Knoepfel | MPD at Fermilab with Spack31

Thanks for your time.

https://github.com/FNALssi/spack-mpd

