
Web-based graphics in ROOT

Olivier Couet, CERN
Bertrand Bellenot, CERN

Sergey Linev, GSI, Darmstadt

24-10-2024

Web-based graphics in ROOT - S. Linev, GSI - 24.10.2024

Outline

JavaScript ROOT
TWebCanvas
Batch image production
Security aspects

2

Web-based graphics in ROOT - S. Linev, GSI - 24.10.2024

JavaScript ROOT
● Data reading from ROOT files
● Interactive drawings and image production
● Powerful async API

● Works in all modern browsers
● Can be used in node.js
● Implements UI for THttpServer
● Used in jupyter and doxygen

https://root.cern/js/

3

https://root.cern/js/

Web-based graphics in ROOT - S. Linev, GSI - 24.10.2024

JavaScript ROOT

4

Web-based graphics in ROOT - S. Linev, GSI - 24.10.2024

JavaScript ROOT

▶ In development since 2012

▶ Undergo several redesigns
● evolves with JavaScript language

▶ now ES6 modules and Promise-based API
● recent version 7.7.4

5

Web-based graphics in ROOT - S. Linev, GSI - 24.10.2024

▶ Offline displays
● ROOT files on http server
● Simple URL syntax

▶ Online display
● Data provider like THttpServer
● Live drawing and updates

▶ In the ROOT session
● root --web=chrome hsimple.C

JSROOT usage

6

Web-based graphics in ROOT - S. Linev, GSI - 24.10.2024

Web graphics in ROOT
No need to change existing user code
Support interactive and batch modes
Produced images very close to ROOT graphics

Just add --web=<type> argument when running ROOT
or gROOT->SetWebDisplay(“chrome”)

Implemented in TWebCanvas - web-based TCanvasImp

7

Web-based graphics in ROOT - S. Linev, GSI - 24.10.2024

TWebCanvas
Data provider for JSROOT client
- prepare data like stacks or axes histogram
- handle custom painters
- control primitives list
- create JSON

Server-side interactivity
- preserve select zooming
- provide and execute context menu commands
- extra UIs like GED or FitPanel

8

Web-based graphics in ROOT - S. Linev, GSI - 24.10.2024

ROOT tutorials with web graphics

9

Web-based graphics in ROOT - S. Linev, GSI - 24.10.2024

TWebCanvas exclusive features

❖ Two fully interactive scales on the same pad
❖ Extra log scales - ln, log2, logN
❖ Better horizontal axes support
❖ “in-frame” drawings of basic primitives
❖ #url[link]{label} latex syntax support
❖ Simple integration of custom fonts

https://root.cern/doc/master/group__tutorial__webcanv.html

10

https://root.cern/doc/master/group__tutorial__webcanv.html

Web-based graphics in ROOT - S. Linev, GSI - 24.10.2024

Two scales

11

Web-based graphics in ROOT - S. Linev, GSI - 24.10.2024

Different logarithmic scales

12

Web-based graphics in ROOT - S. Linev, GSI - 24.10.2024

Horizontal axis

13

Web-based graphics in ROOT - S. Linev, GSI - 24.10.2024

Image production
Exactly same user code:

c1->SaveAs(“image.png”)
c1->SaveAs(“image.pdf”)

Using headless browser mode:
Chrome/Firefox/Edge* browsers

 Linux/MacOS/Windows
~1s per browser invocation

14

Web-based graphics in ROOT - S. Linev, GSI - 24.10.2024

Image production

Supported formats:
▶ SVG - vector graphics, core format
▶ PDF - using svg2pdf.js library
▶ PNG, JPEG, WEBP - raster graphics

Not supported: GIF, PS

15

Web-based graphics in ROOT - S. Linev, GSI - 24.10.2024

stressGraphics test
Testing ROOT graphics functionality and performance

creating 50 canvases and 250 images
verify size of created files

Testing PS, PDF, PNG, JPEG, C formats
using SVG instead of PS for web case

Without optimization run ~5 minutes in web mode

16

Web-based graphics in ROOT - S. Linev, GSI - 24.10.2024

Image production performance

Solution: create several images per browser invocation
1. TCanvas::SaveAll()

a. Works for classical and web graphics
b. Let creates multi-page PDF

2. TWebCanvas::BatchImageMode(100)
a. Next 100 operations buffered in internal queue
b. All image files created together with single browser call

stressGraphics –web=chrome runs in ~40 - 60 s

17

Web-based graphics in ROOT - S. Linev, GSI - 24.10.2024

Testing graphics in CI

➢ stressGraphics
○ classical and web mode
○ testing file sizes

➢ SVG production with classical graphics
○ testing content

➢ SVG production with JSROOT in node.js
○ testing content

Last two points - great work of Adrian Duesselberg

18

Web-based graphics in ROOT - S. Linev, GSI - 24.10.2024

Security aspects

Potential risks:
unauthorized access
man in the middle attack - data packets manipulation

19

ROOT
(http server)

web browser
(client)

http, WebSocket

Web-based graphics in ROOT - S. Linev, GSI - 24.10.2024

HMAC-based authentication

To ensure web widgets security:

▶ binding http server to loopback address
▶ require connection key plus secret session key
▶ HMAC for authentication of each message
▶ temporary HTML files to start web widgets

+ excludes unauthorized access to widgets

+ no message between server and client can be manipulated

+ ensures integrity of the communication but not confidentiality

20

Web-based graphics in ROOT - S. Linev, GSI - 24.10.2024

Solution for public nodes like lxplus

▶ Run http server bound to unix socket

▶ Tunnel socket to local http port

▶ Run web browser on user local node

Implemented as rootssh utility

21

Web-based graphics in ROOT - S. Linev, GSI - 24.10.2024

Conclusion

▶ Ready to use web-based graphics in ROOT

▶ Covers interactive and batch use-cases

▶ Integrated into CI

22

Web-based graphics in ROOT - S. Linev, GSI - 24.10.2024

Backup slides

23

Web-based graphics in ROOT - S. Linev, GSI - 24.10.2024

TWebCanvas

Why need such special class?
- Draw() and Paint() are not strictly separated in ROOT
- Paint() may change list primitives in the pad

- like histogram palette or stats box
- changing object attributes may trigger painting

- see THStack::GetXaxis() implementation

Require special instance for arbitration of such conflicts

24

Web-based graphics in ROOT - S. Linev, GSI - 24.10.2024

Image production in headless browser
Steps to produce image:
1. Create JSON for the canvas
2. Put with JSROOT code into HTML file
3. Invoke browser with loading the HTML file
4. Render graphics and store images in HTML
5. Dump produced results into local file
6. Read file dump, extract produced images
All are file-based operations, no http, no display
Takes ~1 second per invocation

25

Web-based graphics in ROOT - S. Linev, GSI - 24.10.2024

RWebWindow communication

That happens when widget is started:
1. Loading HTML (~10KB)
2. Loading JavaScript (~10MB)
3. Establishing WebSocket connection

a. longpoll http requests when does not work
4. Bi-directional data exchange

26

RWebWindow
(server)

web browser
(client)

WebSocket

Web-based graphics in ROOT - S. Linev, GSI - 24.10.2024

Does https helps?

Yes:
▶ protects traffic from sniffing
▶ excludes man-in-the-middle attacks

But:
▶ do not solve missing client authentication
▶ mostly impossible to implement for localhost applications

27

Web-based graphics in ROOT - S. Linev, GSI - 24.10.2024

Loopback binding

http server bind to loopback (127.0.0.1) address
Sniffing on Linux only with extra privileges

Mac and Windows not clear
Must be default mode in ROOT
Change only with API, no any shell or rootrc variables:

RWebWindowsManager::SetLoopbackMode(false);

28

Web-based graphics in ROOT - S. Linev, GSI - 24.10.2024

Connection key (like Jupyter)
Generate unique connection key for each connection attempt

Will be presented in URL like:

http://localhost:8087/win1/?key=ab65f2134c

Reject any connection attempt without valid key

Reject any attempt to load HTML page without key

Use only WebSockets with loopback device

Make a default for any web-based widget

29

http://localhost:8087/win1/?key=

Web-based graphics in ROOT - S. Linev, GSI - 24.10.2024

Secret session key

Solution:
introduce secret session key, do not expose it to network
use together with connection key for HMAC data signing

http://localhost:8087/win1/?key=ab65f2134c#5498ffac

checksum = HMAC(key+session_key, message)

30

http://localhost:8087/win1/?key=

