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The Cling!®! C++ interpreter has transformed language bindings by enabling incremental compilation at runtime. This allows Python to interact with C++ on demand and lazily construct bindings between the two. The emergence of Clang-REPL as a
potential alternative to Cling within the LLVM compiler framework highlights the need for a unified framework for interactive C++ technologies.

We present CpplnterOp, a C++ Interoperability library, which leverages Cling and LLVM's Clang-REPL, to provide a minimalist and backward-compatible API facilitating seamless language interoperability. This provides downstream interactive C++
tools with the compiler as a service by embedding Clang and LLVM as libraries in their codebases. By enabling dynamic Python interactions with static C++ codebases, CpplnterOp enhances computational efficiency and rapid development in high-
energy physics. The library offers primitives enabling cppyy(PyROOT), an automatic, run-time, Python-C++ bindings generator. We also demonstrate CpplnterOp's utility in diverse computing environments through its adoption as the runtime engine
for xeus-cpp!?, a Jupyter kernel designed for C++.
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CpplnterOp focuses on enabling dynamic C++ interactions with multiple languages and diverse computing & CpplnterOp A CpplnterOp enables seamless utilization of
environments like Jupyter Cling Y hardware accelerators and other heterogeneous
{Interpreter} ECIang-REPL} hardwa re
It achieves this by providing other languages/environments with a performant JIT, to incrementally compile C++ - ~

code, while driving bindings generation using its reflection API. Cling enables data science in ROOT and is a core part of high energy physics analysis and discoveries.

Generalized in LLVM as Clang-REPL, it allowed us to build a backward-compatible abstraction: CppinterOp
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On the left, we compare template instantiations with std::tuple, where more arguments increase instantiation SRR T ek i Wil iy
.133333, yI[3] = 1.48485, x_hat[3] = 1.36865 1.21707 -14.9881

times. On the right, we compare nested templates like std::vector<...<std::vector>>, where cppyy instantiates 133333, yI3] = 1.48483, x hat (3] = 1.36865 1.21767 ~14.968)
from the innermost to the outermost layer. These patterns are key to high-performance numerics libraries using A .2, y[5] = 1.74216, x_hat[5] = 1.66278 1.38374 -14.9637
template expressions.

x_hat_new[i] += matvecmulCUDA(K, difference) [i];
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P = matmulCUDA(matsubCUDA(I, matmulCUDA(K, C)), P);
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Plot in Matplotlib! This workflow is achieved in a notebook environment providing the best of all worlds
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CpplnterOp significantly improves cppyy in both time and memory for template instantiations. For std::tuple- 15  emaes | 0€€ More demos at our talk at the
based multitype arrays, CpplnterOp is 40% faster and 4.5% more memory-efficient. Deeply nested templates 07 J 2023 LLVM developers meeting:
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