
Aaron Jomy1,2; Baidyanath Kundu3; Wim Lavrijsen4; Alexander Penev5; Vassil Vassilev1,2

Award #: OAC-1931408

The Cling[3] C++ interpreter has transformed language bindings by enabling incremental compilation at runtime. This allows Python to interact with C++ on demand and lazily construct bindings between the two. The emergence of Clang-REPL as a
potential alternative to Cling within the LLVM compiler framework highlights the need for a unified framework for interactive C++ technologies.

We present CppInterOp, a C++ Interoperability library, which leverages Cling and LLVM's Clang-REPL, to provide a minimalist and backward-compatible API facilitating seamless language interoperability. This provides downstream interactive C++
tools with the compiler as a service by embedding Clang and LLVM as libraries in their codebases. By enabling dynamic Python interactions with static C++ codebases, CppInterOp enhances computational efficiency and rapid development in high-

energy physics. The library offers primitives enabling cppyy(PyROOT), an automatic, run-time, Python-C++ bindings generator. We also demonstrate CppInterOp's utility in diverse computing environments through its adoption as the runtime engine
for xeus-cpp[4], a Jupyter kernel designed for C++.

An illustration of a scientific workflow powered by CppInterOp

GitHub: https://github.com/compiler-research/CppInterOp
Email: aaron.jomy@cern.ch, vassil.vassilev@cern.ch
Visit us at https://compiler-research.org

Load 1D projectile motion dataset in Python with pyyaml

Run the CUDA accelerated C++ function on the same data

Define a function that updates a discrete Kalman filter cycle,
using CUDA kernels for all matrix computations

Plot in Matplotlib! This workflow is achieved in a notebook environment providing the best of all worlds

CppInterOp: Advancing Interactive C++ for High Energy Physics

The adoption of CppInterOp in ROOT[1, 2] is
currently being tested and aims to abstract the
interpreter infrastructure into LLVM. This also

brings in efforts from the broader LLVM
community upstream.

Provides out-of-the box compatibility with CUDA,
OpenMP and other parallel computing platforms

CppInterOp enables seamless utilization of
hardware accelerators and other heterogeneous

hardware

CppInterOp focuses on enabling dynamic C++ interactions with multiple languages and diverse computing
environments like Jupyter

It achieves this by providing other languages/environments with a performant JIT, to incrementally compile C++
code, while driving bindings generation using its reflection API.

Cling enables data science in ROOT and is a core part of high energy physics analysis and discoveries.

Generalized in LLVM as Clang-REPL, it allowed us to build a backward-compatible abstraction: CppInterOp

Result: The KF converges
on 9.81 𝑚/𝑠2 for gravity

1CERN, 2Princeton University, 3ETH Zurich, 4Lawrence Berkeley National Lab, 5University of Plovdiv

Contact

Runtime engine
CUDA C++ kernel

OpenMP C++ kernel
…

Interpreter
JitCall

DynamicLibraryManager

CppInterOp

Cling
Interpreter

LLVM
Clang-REPL

CppyyROOT

PyROOT

Clang-REPL Design

C/C++

Compilation
(libIncremental)

LLVM JIT

Clang-REPL

MC (x86, NVPTX, ...)

GPGPU

Transformations

CPU

Runtime C++
Interpreter

Python/C++
Interoperability

Xeus-cpp

Python/C++
Notebooks

On the left, we compare template instantiations with std::tuple, where more arguments increase instantiation
times. On the right, we compare nested templates like std::vector<...<std::vector>>, where cppyy instantiates

from the innermost to the outermost layer. These patterns are key to high-performance numerics libraries using
template expressions.

CppInterOp significantly improves cppyy in both time and memory for template instantiations. For std::tuple-
based multitype arrays, CppInterOp is 40% faster and 4.5% more memory-efficient. Deeply nested templates

show an initial speedup of 6.2x, tapering to 3.8x at 4 levels, with further scaling and memory gains.

Python Python Interpreter
CppInterOp

Layer
Clang-REPL

Swift, Julia
CLR (C#)

…

C++ as a service

Programming Environments

[1] The official repository for ROOT: analyzing, storing and visualizing big data, scientifically.
https://github.com/rootproject/root

[2] ROOT: analyzing petabytes of data, scientifically. https://root.cern/

[3] V Vasilev, Ph Canal, A Naumann, and P Russo. Cling–the new interactive interpreter for ROOT 6. In Journal of
Physics: Conference Series, volume 396, page 052071, 2012.

[4] Xeus is now a Jupyter subproject. https://blog.jupyter.org/xeus-is-now-ajupyter-subproject- c4ec5a1bf30b

References

See more demos at our talk at the
2023 LLVM developers meeting:

https://github.com/compiler-research/CppInterOp
mailto:aaron.jomy@cern.ch
mailto:vassil.vassilev@cern.ch
https://compiler-research.org/
https://github.com/rootproject/root
https://root.cern/
https://blog.jupyter.org/xeus-is-now-ajupyter-subproject-c4ec5a1bf30b

	Slide 1

