BERKELEY

“w rrINCETON CpplinterOp: Advancing Interactive C++ for High Energy Physics
‘ AN UNIVERSITY Aaron Jomy!Z: Baidyanath Kundu3; Wim Lavrijsen®; Alexander Penev>; Vassil Vassilev!? =
Award #: OAC-1931408 ICERN, 2Princeton University, 3ETH Zurich, “Lawrence Berkeley National Lab, >University of Plovdiv H

COMPILER

C|[R

RESEARCH

The Cling!®! C++ interpreter has transformed language bindings by enabling incremental compilation at runtime. This allows Python to interact with C++ on demand and lazily construct bindings between the two. The emergence of Clang-REPL as a
potential alternative to Cling within the LLVM compiler framework highlights the need for a unified framework for interactive C++ technologies.

We present CpplnterOp, a C++ Interoperability library, which leverages Cling and LLVM's Clang-REPL, to provide a minimalist and backward-compatible API facilitating seamless language interoperability. This provides downstream interactive C++
tools with the compiler as a service by embedding Clang and LLVM as libraries in their codebases. By enabling dynamic Python interactions with static C++ codebases, CpplnterOp enhances computational efficiency and rapid development in high-
energy physics. The library offers primitives enabling cppyy(PyROOT), an automatic, run-time, Python-C++ bindings generator. We also demonstrate CpplnterOp's utility in diverse computing environments through its adoption as the runtime engine
for xeus-cpp!?, a Jupyter kernel designed for C++.

N Stttk =S ROOT Cppyy T / \ The adoption of CpplInterOp in ROOT! % is

\ G c o
: outh Suthon It t | e . . - Clang-REPL Design currently being tested and aims to abstract the
| YA e |' S k PYROOT ey e e CIC++ interpreter infrastructure into LLVM. This also
| 4 o PR e - Clang-REPL | [pompiation H Clang-REPL }—[Transformations} brings in efforts from the broader LLVM

: : : (liblIncremental)
: . - |
| I
\]

Layer ‘ \ .
community upstream.
\ , Runtime C++ _ ,
————————————————————————— Interpreter Interpreter ~ Runtime engine

[Swift,]ulia] [}
CLR (CH) JitCall CUDA C++ kernel

CPU (] [oo (]
. R DynamicLibraryManager OpenMP C++ kernel [LLVM “T} [M .)J< Provides out-of-the box compatibility with CUDA,

______________________ C++ as a service

GPGPU OpenMP and other parallel computing platforms
Programming Environments \ / k / P P P gP

CpplnterOp focuses on enabling dynamic C++ interactions with multiple languages and diverse computing & CpplnterOp A CpplnterOp enables seamless utilization of
environments like Jupyter Cling Y hardware accelerators and other heterogeneous
{Interpreter} ECIang-REPL} hardwa re
It achieves this by providing other languages/environments with a performant JIT, to incrementally compile C++ - ~

code, while driving bindings generation using its reflection API. Cling enables data science in ROOT and is a core part of high energy physics analysis and discoveries.

Generalized in LLVM as Clang-REPL, it allowed us to build a backward-compatible abstraction: CppinterOp

s Time taken by original Cppyy B M emory used by original Cppyy
s Time taken by Cppyy w/ InterOp B Memory used by Cppyy w/ InterOp
1000 10000 0.09 142 An illustration of a scientific workflow powered by CppinterOp
0.08 1440
100 o0 = _ Define a function that updates a discrete Kalman filter cycle, Load 1D projectile motion dataset in Python with pyyaml
© 2 . = : . : .
23 10 =5 gV 138 = using CUDA kernels for all matrix computations *pythor
E ‘:‘:. E': ‘:‘:. E0.06 136 b std: :vector<double> KalmanFilter::update(const std::vector<double=& y) { :!-“"F'ﬂ"t yaml
2 %0 1 w0 £ = g if (linitialized) import cppyy
e . & - c :_ throw std::runtime_error("Filter is not initialized!");
E -E:.': = -E:.': E (.03 134 &= with open('data/measurements.yml', 'r') as file:
== 0.1 E = - E // Discrete Kalman filter time update data_dict = yaml.safe_load(file)
= 10 ﬁ = - 0.04 132 = ¥x_hat_new = matvecmulCUDA(A, x_hat); data_list = list(float(x) for x in data_dict['data’])
- P = mataddCUDA(matmulCUDA(matmulCUDA(A, P), mattransposeCUDA(A}), Q);
.01 003 130 measurements_vector = cppyy.gbl.std.vector['double'] (data_list)
' f// Discrete Kalman filter measurement update
0.001 1 0.07 178 std::vector<std: :vector<double>> inv = matinverse(mataddCUDA(matmulCUDA)
I 7 1 4 5 & 7 8% 9 10 et = K = matmulCUDA(matmulCUDA(P, mattransposeCUDA(C)), inv); Run the CUDA accelerated C++ function on the same data
| 2 3 q 5 b) hd 9 10 std::vector<double> temp = matvecmulCUDA(C, x_hat_new);
Number of nested t late instantiation: : . . std::vector<double> difference = vecsubCUDA(y, temp); std: :vector<std::vector<double>> g_res = run_kf(true);
e ot Ee B Number of template arguments std::vector<double> gain = K[@]; ’
for (size t i = ©; i < x_hat_new.size(); i++) {

@, x_hat[0]: 1.04203 @ -15
0333333, y([0] = 1.04203, x_hat[@] = 1.04283 -08.5 -15
. 0666667, y[1l] = 1.108727, x_hat[1l] = 1.88556 -9.0966619 -14.9988

On the left, we compare template instantiations with std::tuple, where more arguments increase instantiation SRR T ek i Wil iy
.133333, yI[3] = 1.48485, x_hat[3] = 1.36865 1.21707 -14.9881

times. On the right, we compare nested templates like std::vector<...<std::vector>>, where cppyy instantiates 133333, yI3] = 1.48483, x hat (3] = 1.36865 1.21767 ~14.968)
from the innermost to the outermost layer. These patterns are key to high-performance numerics libraries using A .2, y[5] = 1.74216, x_hat[5] = 1.66278 1.38374 -14.9637
template expressions.

x_hat_new[i] += matvecmulCUDA(K, difference) [i];

}

]
]
2
P = matmulCUDA(matsubCUDA(I, matmulCUDA(K, C)), P);

+ r+ 7+ + ~+ +
|
[o R v e R v

Plot in Matplotlib! This workflow is achieved in a notebook environment providing the best of all worlds

Kalman Gain Plot True Value vs. g _pred

CpplnterOp significantly improves cppyy in both time and memory for template instantiations. For std::tuple- 15 emaes | 0€€ More demos at our talk at the
based multitype arrays, CpplnterOp is 40% faster and 4.5% more memory-efficient. Deeply nested templates 07 J 2023 LLVM developers meeting:
show an initial speedup of 6.2x, tapering to 3.8x at 4 levels, with further scaling and memory gains. 06{ | o
3 13 Result: The KF converges
e £ 05 £ on 9.81 m/s* for gravity
References i 21
[1] The official repository for ROOT: analyzing, storing and visualizing big data, scientifically. 2 é .
https://github.com/rootproject/root >
0.2 - 107 oo,
[2] ROOT: analyzing petabytes of data, scientifically. https://root.cern/ - - | — . ol | | | | | | |
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140

Time Steps Index

[3] V Vasilev, Ph Canal, A Naumann, and P Russo. Cling—the new interactive interpreter for ROOT 6. In Journal of

Physics: Conference Series, volume 396, page 052071, 2012. GitHub: https://github.com/compiler-research/CpplnterOp

Contact Email: aaron.jomy@cern.ch, vassil.vassilev@cern.ch
Visit us at https://compiler-research.org

[4] Xeus is now a Jupyter subproject. https://blog.jupyter.org/xeus-is-now-ajupyter-subproject- c4ec5albf30b

https://github.com/compiler-research/CppInterOp
mailto:aaron.jomy@cern.ch
mailto:vassil.vassilev@cern.ch
https://compiler-research.org/
https://github.com/rootproject/root
https://root.cern/
https://blog.jupyter.org/xeus-is-now-ajupyter-subproject-c4ec5a1bf30b

	Slide 1

