
Benchmarking massively-parallel
Analysis Grand Challenge workflows

using Snakemake and REANA
 Marco Donadoni[1] Matthew Feickert[2] Alexander Held[2]

Andrii Povsten[3] Oksana Shadura[4] Tibor Simko[1]

[1]CERN [2]University of Wisconsin Madison (US)
[3]Princeton University (US) [4]University of Nebraska Lincoln (US)

1

27th Conference on Computing in High Energy and Nuclear Physics
October 21st-25th 2024, Krakow, Poland

IRIS-HEP

Objective: Software R&D for HL-LHC

● Develop analysis tools
● Demonstrate execution at scale suitable for

HL-LHC requirements
● Foster reproducibility and reuse

Analysis Grand Challenge

● Testbed for software library development
● Environment to prototype analysis workflows
● (Performance) testing of analysis facilities

Example: CMS ttbar analysis pipeline

https://iris-hep.org/
Institute for Research and Innovation in Software for High Energy Physics

2

https://iris-hep.org/

AGC CMS ttbar cross-section measurements

Chosen because of relevant analysis
workflow aspects

Around 2TB of input NanoAOD from
2015 Run-2 CMS Open Data

Massively-parallel workflow, nearly
800 input files

To ease interactivity, one of the
implementations is a Jupyter
notebook using the coffea framework

Can we scale-out on REANA?

https://github.com/iris-hep/analysis-grand-challenge 3

https://github.com/iris-hep/analysis-grand-challenge

REANA

Multiple compute backends:

● Kubernetes
● HTCondor
● Slurm

Multiple workflow languages:

● CWL
● Serial
● Snakemake
● Yadage

Multiple means of use:

● Command-line client
● Web UI

Running containerised analysis workflows on the cloud

https://www.reana.io 4

https://www.reana.io

def get_file_paths (wildcards, max=N_FILES_MAX_PER_SAMPLE):
 "Return list of file paths for the given SAMPLE and CONDITION."
 filepaths = []
 ...

rule all:
 input:
 "histograms.root"

rule process_sample :
 container:
 "docker.io/reanahub/reana-demo-agc-cms-ttbar-coffea:1.0.0"
 resources:
 kubernetes_memory_limit ="1850Mi"
 input:
 get_file_paths,
 notebook ="file_merging.ipynb"
 output:
 "everything_merged_{sample}__{condition}.root"
 params:
 sample_name = '{sample}__{condition}'
 shell:
 "/bin/bash -l && source fix-env.sh && "
 "papermill {input.notebook} "
 "merged_{params.sample_name}.ipynb "
 "-p sample_name {params.sample_name} -k python3"

Snakemake

Python-based workflow
description language

Directed acyclic graph (DAG) of
jobs is automatically constructed
from provided rules

Docker container encapsulates
all the needed dependencies

Notebooks are run parametrised
via papermill

5https://snakemake.readthedocs.io

https://snakemake.readthedocs.io

1. Processing one file at a time
○ one job per input file (more than 700!)

2. Merging all processed files of a
given sample

○ one job per sample (9)
3. Merging all results from previous

step
○ one single job (1)

All jobs are short-lasting (usually less
than 1 minute each)

CMS ttbar analysis workflow

…

…

1

2

3

6

rule process_sample_one_file_in_sample:
 container:
 "docker.io/reanahub/reana-demo-agc-cms-ttbar-coffea:1.0.0"
 resources:
 kubernetes_memory_limit="1850Mi"
 input:
 notebook="ttbar_analysis_reana.ipynb"
 output:
 "histograms/histograms_{sample}__{condition}__{index}.root"
 params:
 sample_name = "{sample}__{condition}"
 shell:
 "..."

rule process_sample:
 container:
 "docker.io/reanahub/reana-demo-agc-cms-ttbar-coffea:1.0.0"
 resources:
 kubernetes_memory_limit="1850Mi"
 input:
 get_file_paths,
 notebook="file_merging.ipynb"
 output:
 "everything_merged_{sample}__{condition}.root"
 params:
 sample_name = '{sample}__{condition}'
 shell:
 "..."

rule merging_histograms:
 container:

"docker.io/reanahub/reana-demo-agc-cms-ttbar-coffea:1.0.0"
 resources:
 kubernetes_memory_limit="1850Mi"
 input:
 "everything_merged_ttbar__nominal.root",
 "everything_merged_ttbar__ME_var.root",
 "everything_merged_ttbar__PS_var.root",
 "everything_merged_ttbar__scaleup.root",
 "everything_merged_ttbar__scaledown.root",
 "everything_merged_single_top_s_chan__nominal.root",
 "everything_merged_single_top_t_chan__nominal.root",
 "everything_merged_single_top_tW__nominal.root",
 "everything_merged_wjets__nominal.root",
 notebook="final_merging.ipynb"
 output:
 "histograms.root"
 shell:
 "..."

rule all:
 input:
 "histograms.root"

Snakemake scatter-gather paradigm

7

Python function that
depends on wildcards
(sample, condition) target rule

input files are not
in input list;

the notebook
constructs remote
URL from passed

parameters
(sample,

condition)

automated multi-cascading scatter-gather thanks to
declarative approach: each rule automatically
creates as many jobs as needed, no need to

manually create and dispatch every job

Setting up REANA test cluster
Kubernetes v1.30 cluster with 53 nodes

● one master node
● three REANA infrastructure nodes

○ web server, database, message broker
● one workflow orchestration node

○ Snakemake
● 48 job-running nodes

Node flavour

● 8 vCPUs
● 15 GB RAM

8

Episode 1: First run

Ready, set … Oops!

Workflow (intermittently) fails
due to a bug in caching
mechanism when handling
deleted files, occurring when
Snakemake manages many
concurrent jobs

Lesson: highly concurrent
workloads will uncover
synchronization issues

9

Episode 2: First success

After fixing the caching issue, the workflow
execution succeeds on REANA 0.9.2

However:

● the workflow does not scale beyond six
nodes

● bottleneck is the creation of jobs that
gets slower and slower as more jobs are
being created

● REANA 0.9.2 is not able to spawn jobs
fast enough to fully utilise the cluster

10

Episode 3: Profiling job scheduling

Profiling shows that mechanism to cache job results is
slowing down the creation of jobs

● slower the more jobs are running/files are present
● disabled by default but still affecting workflows
● not needed as Snakemake has its own caching

system

REANA caching system was fully disabled as part of
release 0.9.3

Workflow execution now scales much better compared
to previous REANA version (-58% execution time)

Lesson: avoid or reduce disk access along critical path

11

BEFORE

AFTER

Episode 4: Improving Kerberos authentication

Kerberos is needed to avoid rate limits on EOSPUBLIC, where the
input datasets are stored and read from

“Sidecar” container periodically renews Kerberos tickets

In REANA 0.9.3, the sidecar container also periodically checks if the
job has finished, to stop the renewal loop. Periodic polling is done
every 15s, so there can be some wait time between the end of the job
(t1) and when the sidecar container actually stops (t2).

To reduce the wait time, the sidecar container is now notified when
the job finishes (-9% execution time)

Lesson: periodic polling is easy but not always suitable; polling
periods need to be carefully tuned

time

Job
Kerberos sidecar

t0 t1 t2 12

Episode 5: User secrets

REANA stores user secrets needed by
workflow runs (e.g. keytab files) as
Kubernetes secrets

Latest version of REANA improves
secrets handling by fetching secrets
from Kubernetes once per workflow
instead of once per job (-14% execution
time), thus speeding up job creation

Lesson: cache and re-use data from
external systems if possible to avoid
network calls

13

BEFORE

AFTER

Episode 6: Database connections

REANA spawns one “orchestrator” pod per workflow, which needs
database access

When running hundreds of workflows, many concurrent
connections to the database become an issue

In REANA 0.9.3, the orchestrator pod closes the database
connection after each transaction

● good for long lasting jobs, as most of the time connection is
idle

● more overhead when spawning many hundreds of jobs in a
short amount of time

As of the latest version, REANA supports pgBouncer to allow the
pooling of many more concurrent connections (-7% execution
time)

Lesson: avoid or optimise database access along critical path
14

REANA configures Snakemake so that there
are never more than 300 running jobs at the
same time

This is good to avoid overwhelming small or
local clusters, but can limit the performance of
clusters with many nodes

Limit was raised to 1000 jobs. Cluster utilisation
slightly improved, creating jobs faster and
reaching 200 jobs running concurrently (-4%
execution time)

Episode 7: Snakemake internals

15

BEFORE

AFTER

Episode 8: Kubernetes optimisation

Mismatch between when REANA requests the
pod creation and when the pod is created in
the cluster (orange area)

Checking Kubernetes logs,
kube-controller-manager is throttling
requests to the Kubernetes API server

Oct 09 08:23:20 reana-test-[...]-master-0 bash[269122]: I1009 08:23:20.762301
1 request.go:629] Waited for 88.20434ms due to client-side throttling, not

priority and fairness, request:
PATCH:https://127.0.0.1:6443/api/v1/namespaces/default/pods/reana-run-job-[...]

16

Episode 8: Kubernetes optimisation (2)

Tuned some parameters of kube-controller-manager

● QPS to Kubernetes API server
○ --kube-api-qps=200

● Burst to Kubernetes API server
○ --kube-api-burst=300

● Jobs that can sync concurrently
○ --concurrent-job-syncs=50

● Garbage collector workers that can sync concurrently
○ --concurrent-gc-syncs=200

Cluster is now close to being fully utilised with more than 300
running jobs at the same time

Full analysis runtime showed small improvements (-7%
execution time), but cleanup of jobs is now bottleneck

Lesson: tuning application and system settings for each
deployment can have a big impact

17

BEFORE

AFTER

Final results

Runtime reduced from
14m26s to 3m54s (3.7x
faster) when tested with 48
nodes

Reached 323 peak
concurrent jobs, from initial
102 jobs (3.2x more) when
tested with 48 nodes

18

BEFORE

AFTER

Conclusions

● Snakemake and declarative workflows can efficiently
express massively-parallel particle physics
computational paradigms

● Analysis Grand Challenge project is very useful to
optimise performance of analysis platforms

● Optimisations allowed to improve REANA
performance for massively-parallel workflows by a
factor of ~3x

19

https://iris-hep.org/

https://www.reana.io/

This work was partially supported by the U.S. National Science Foundation (NSF)
under Cooperative Agreement OAC-2226378, OAC-2226379 and OAC-2226380
(FAIROS-HEP) in collaboration with OAC-1836650 and PHY-2323298 (IRIS-HEP)

https://home.cern/

https://snakemake.readthedocs.io

https://iris-hep.org/
https://www.reana.io/
https://home.cern/
https://snakemake.readthedocs.io

Backup slides

20

All results

21

Execution time (s) 3 nodes* 6 nodes* 12 nodes* 24 nodes* 48 nodes+

E1: First run - - - - -

E2: First success 1612 830 854 863 866

E3: Profiling job scheduling 1634 884 494 367 364

E4: Improving Kerberos authentication 1415 691 421 331 330

E5: User secrets 1430 731 405 281 283

E6: Database connections 1417 704 415 299 262

E7: Snakemake internals 1415 724 394 264 252

E8: Kubernetes optimisation 1473 714 410 266 234

*execution time of one run +average execution time of three runs

Theoretical maximum number of running jobs

● Each job requests 1850MiB of RAM
● Each node has 15GB of memory, but not all of it is available to jobs
● When cluster is idle, we have measured up to 14 GiB of free memory in a

single node
● 14GiB / 1850MiB = at most 7 jobs can run concurrently in a single node
● In the whole cluster:

○ at most 21 jobs with 3 nodes
○ at most 42 jobs with 6 nodes
○ at most 84 jobs with 12 nodes
○ at most 168 jobs with 24 nodes
○ at most 336 jobs with 48 nodes

22

