Benchmarking massively-parallel
Analysis Grand Challenge workflows
using Snakemake and REANA

Marco Donadonil'l Matthew Feickert!?! Alexander Held!?!

Andrii PovstenP®! Oksana Shadural® Tibor Simko!"]

MCERN [PlUniversity of Wisconsin Madison (US)
BlPrinceton University (US) “University of Nebraska Lincoln (US)

27" Conference on Computing in High Energy and Nuclear Physics
October 21st-25th 2024, Krakow, Poland

IRIS-HEP

Institute for Research and Innovation in Software for High Energy Physics

https://iris-hep.orqg/
Objective: Software R&D for HL-LHC D p.org
e Develop analysis tools Analysis
e Demonstrate execution at scale suitable for Analysis o . Facilities

matching tech.requirements)

HL-LHC requirements Tools
PY Foster reproducibility and reuse T — — AAAAAAAAAAAA

° &R!};})ﬂ?}ﬂmw func-ad| S"?"mt‘::“x g
Analysis Grand Challenge T T

rray
* Manipulating arrays ':np;':::!fs

e Testbed for software library development |

; . QR T =" S
e Environment to prototype analysis workflows %o ¢ Lg,;';:;
e (Performance) testing of analysis facilities

Example: CMS ttbar analysis pipeline

Event selection, Workspace

(D D

Histograms

systematic
uncertainties

Y il

https://iris-hep.org/

AGC CMS ttbar cross-section measurements

Chosen because of relevant analysis
workflow aspects

Around 2TB of input NanoAOD from
2015 Run-2 CMS Open Data

Massively-parallel workflow, nearly
800 input files

To ease interactivity, one of the
implementations is a Jupyter
notebook using the coffea framework

Can we scale-out on REANA?

open

Simulated dataset TT_TuneCUETP8M1_13TeV-
powheg-pythia8 in MINIAODSIM format for 2015

collision data

T TuneCUETPBM1_13TeV-powheg-pythiag/RunllFall 1 SMIniAODV2.
PU25n5Data2015v1 76X mcRun2. asymptotic_v12_ext3I/MINIAODSIM, CMS Collaboration

Cite as: CMS Collaboration (2021). Simulated dataset TT_TuneCUETP8M1_13TeV-powheg
pythias in MINIAODSIM format for 2015 collision data. CERN Open Data Portal. DOL10.7483/

GPENDATACMS JJEM.1DKC

Description

Simulated dataset TT_TuneCUETP8M1
colision data.

13TeV-powheg-pythik

See the description of the simulated dataset names in: Abo

These simulated datasets correspond to the collision data &
2015,

Cross section

For pp collisions at 13TeV, this sample has a cross section of
calculated using the method described in CMS guide for crg

This cross section takes into account a
settinas and/or filters.

= 4 jets, 1 b-tag

5000 == single_top_s_chan
. single_top_t_chan
= single_top_tw

4000 - vjets
= ttbar

3000

2000

1000

100 200 300 400 500
Hr [GeV]

filtering efficiency of |

ections evaluated af
Duld be used, if aval

al

5 mcRun2_asympt
w767

Configuration: number of files and data delivery
path

The number of files per sample set here determines the size of the dataset we are processing.
There are 9 samples being used here, all part of the 2015 CMS Open Data release.

These samples were originally published in miniAOD format, but for the purposes of this
demonstration were pre-converted into nanoAOD format. More details about the inputs can be
found here.

The table below summarizes the amount of data processed depending on the
N_FILES_MAX_PER_SAMPLE setting.

setting number of files total size number of events
F 9 229GB 10,455,719

2 18 42.8GB 19,497,435

5 43 105 GB 47,996,231

10 79 200 GB 90,546,458

20 140 359 GB 163,123,242

50 255 631 GB 297,247,463

100 395 960 GB 470,397,795

200 595 1.407TB 705,273,291

-1 787 1.78 TB 940,160,174

The input files are all in the 1-3 GB range.

https://github.com/iris-hep/analysis-grand-challenge

https://github.com/iris-hep/analysis-grand-challenge

REANA

CLIUI

$ reana-client create -w roofit

roofit.s

$ reana-client upload -w roofit

File /code/gendata.C was successfully uploaded.

File /code/fs reana-client logs -w roofit

roofit 4
s reana-clidseeps 2 to MQ
Inave

2021-93-81 07:59:33,842 | root | MainThread | INFO |

code/fitdaty
$ reana-clid
INAME RUN,

roofit 4 **> J0b logs

s reana-clid==> Step: gendata

results/plot**> Workflow ID: 45¢75d61-¢139-424b-2709-37fdde8e8dfe
==> Compute backend: Kubernctes

==> Job I0: 3 b

$ reana-clid..; workflow engine logs
roofit has Y2921.93.01 07:59:15,678 | root | MainThread | INFO | Publishing
5 """";::"'code/gcnaala.c(zeeeo,'resul!s/da(a.m:')‘. total steps 2 to W

2021-23-01 07:59:24,803 | root | MainThread | INFO | Publishing
‘code/fitdata.C("results/data.root”, “results/plot.png™)’, total

3f12-4¢76-bd2a-79944304876b/work f lows /45075461

O]

-3 -427 700

=> Docker image: reanahub/reana-env-root6:6.18.084

ax> Command: mkdir -p results 8& root b -q

*code/gendata.C(26000, “results/data.root”)

Web Ul
reana ™
o rostc. bt a2
—8)

Running containerised analysis workflows on the cloud

reana

Workflow controller Job controller

Shared
storage

/
/

7
@
1
/
,/RESTAPI

myschedd

—
-

https://www.reana.io

Multiple compute backends:

e Kubernetes
Kubernetes g HTCOﬂdOf
e Slurm

Multiple workflow languages:

CWL

Serial
Snakemake
Yadage

HTCondor

Multiple means of use:

Slurm

e Command-line client
e Web Ul

https://www.reana.io

Snakemake

Python-based workflow
description language

Directed acyclic graph (DAG) of
jobs is automatically constructed
from provided rules

Docker container encapsulates
all the needed dependencies

Notebooks are run parametrised
via papermill

def get file paths (wildcards, max=N FILES MAX PER SAMPLE) :
"Return list of file paths for the given SAMPLE and CONDITION."

filepaths = []

rule all:

input:
"histograms.root"

rule process_sample :

container:

"docker.io/reanahub/reana-demo-agc-cms-ttbar-coffea:1.0.0"
resources :

kubernetes memory limit ="1850Mi"
input:

get file paths,

notebook="file merging.ipynb"

output:

"everything merged {sample} {condition}.root"
params :

sample name = '{sample} {condition}'
shell:

"/bin/bash -1 && source fix-env.sh && "
"papermill {input.notebook} "

"merged {params.sample name}.ipynb "

"-p sample name {params.sample name} -k python3"

https://shnakemake.readthedocs.io

https://snakemake.readthedocs.io

CMS ttbar analysis workflow

1. Processing one file at a time
o one job per input file (more than 700!)

2. Merging all processed files of a
given sample
o one job per sample (9)
3. Merging all results from previous
step

o one single job (1)

All jobs are short-lasting (usually less
than 1 minute each)

Snakemake scatter-gather paradigm

rule process sample one file in sample:

in fil ren container:
RUt. es a_e_ ot "docker.io/reanahub/reana-demo-agc-cms-ttbar-coffea:1.0.0"
n InPUt IISt’ resources:

the notebook
constructs remote inpyt

notebook="ttbarianalysisireana.ipynb"I

kubernetes memory limit="1850Mi"

URL from passed Ut T
pararneters "histograms/histogramsiksample}Ai{condition}gi{index}lroot"
arams:
(san.lp]..e, sample name = "{sample} {condition}"
condition) shell:

rule process_sample:
container:
"docker.io/reanahub/reana-demo-agc-cms-ttbar-coffea:1.0.0"
resources:
kubernetes memory limit="1850Mi"

PuLt:
|get7file7paths]
notebook="file merging.ipynb"

output:

"everything merged {sample}_ {condition}.root"
params:

sample hame = '{sample}_ {condition}'
shell:

Python function that
depends on wildcards
(sample, condition)

automated multi-cascading scatter-gather thanks to

declarative approach: each rule automatically
creates as many jobs as needed, no need to
manually create and dispatch every job

rule merging histograms:
container:

"docker.io/reanahub/reana-demo-agc-cms-ttbar-coffea:1.0.0"

resources:

kubernetes memory limit="1850Mi"

input:
"everything merged ttbar nominal.root",
"everything merged ttbar ME var.root",
"everything merged ttbar PS var.root",
"everything merged ttbar_ scaleup.root",
"everything merged ttbar scaledown.root",
"everything merged single top s chan_nominal.root",
"everything merged single top t chan nominal.root",
"everything merged single top tW_nominal.root",
"everything merged wjets nominal.root",
notebook="final merging.ipynb"
output:

"histograms.root"

shell:

rule all:
input:
"histograms.root"

target rule

Setting up REANA test cluster

Kubernetes v1.30 cluster with 53 nodes 1 1 *
e one master node Nd= &=

e three REANA infrastructure nodes
o web server, database, message broker

e one workflow orchestration node
o Snakemake

e 48 job-running nodes

Node flavour

e 8VvCPUs
15 GB RAM

Episode 1: First run

Ready, set ... Oops!

Workflow (intermittently) fails
due to a bug in caching
mechanism when handling
deleted files, occurring when
Snakemake manages many
concurrent jobs

Lesson: highly concurrent
workloads will uncover
Synchronization issues

reana

x reana-demo-agc-cms-ttbar-coffea #48

Finished 9 months ago

2 Engine logs

2024-01-15 10:09:33,124

2024-01-15 10:09:33,125
2024-01-15 10:09:
2024-01-15 10:09:

finished. job_id:

2024-01-15 10:09

2024-01-15 10:09:

2024-01-15 10:09:

33,125
33,239

(a5

133,240

33,240

33,240

failed. job_id: None

>_Job logs

process_sample_ttbar_ME_var_one_file: Job submission error: Job submission failed.
[Errno 2] No such file or directory: '/var/reana/users/[...]/workflows/[...]/.snakemake/incomplete/@aGlzdGoncm[...]/[..

2024-01-15 10:09:33,252 |

failed after 3 min 32 sec .
step 21/564 °

3 Workspace B specification

snakemake.logging | Thread-1 | INFO | [Mon Jan 15 10:09:33 2024
snakemake. logging | Thread-1 | INFO | Finished job 463
snakemake.logging | Thread-1 | INFO | 20 of 565 steps (4%) done

reana-workflow-engine-snakemake | Thread-1 | INFO | process_sample_wjets_nominal_one_file job is

snakemake.logging | Thread-1 | INFO | [Mon Jan 15 10:09:33 2024

snakemake. logging | Thread-1 | INFO | Finished job 555.

reana-workflow-engine-snakemake | MainThread | ERROR | Error submitting job

reana-workflow-engine-snakemake | MainThread | INFO | process_sample_ttbar_ME_var_one_file job is

10:09:33,286 | reana-workflow-engine-snakemake | Thread-1 | INFO | process_sample wjets nominal one file
finished. job_id: [roe]
2024-01-15 10:09:33,288 | snakemake.logging | Thread-1 | INFO | [Mon Jan 15 10:09:33 2024
2024-01-15 10:09:33,288 | snakemake.logging | Thread-1 | INFO | Finished job 451
2024-01-15 10:09:33,288 | snakemake.logging | Thread-1 | INFO | 22 of 565 steps (4%) done

P Privacy notice

B Docs D Forum % Chat % Cluster health

Workflow execution time

Episode 2: First success
After fixing the caching issue, the workflow
execution succeeds on REANA 0.9.2 /
However:
o the WorkfIOW does not Scale beyond SiX Number of nodes
nodes (E2: First suctess/48 nodes/1850 M)
e Dottleneck is the creation of jobs that I e
gets slower and slower as more jobs are 001 " Gl mao
be|ng Created Ej:z- —— finished
e REANA0.9.2 is not able to spawn jObS §300- ...
fast enough to fully utilise the cluster

Time (h:m:s)

10

Workflow execution time

1600 - —— E2: First success

Episode 3: Profiling job scheduling S

1200 -

—
o
o
S)

Profiling shows that mechanism to cache job results is
slowing down the creation of jobs

Execution time (s)
o]
o
o

600 -

400
e slower the more jobs are running/files are present]
disabled by default but still affecting workflows T N U
e not needed as Snakemake has its own caching
Job creation operations (E2: First success/48 nodes/1850 MiB)
system .- [BEFORE
= —— manager:before_execution
. . ‘2‘ 1.0 ——— manager:execute
REANA caching system was fully disabled as part of 8 —— manager-create_job_in_db
g 05 —— manager:cache_job
release 093 o —— manager:dispose
00 i Ll rolry
. 0 100 200 300 400 500 600 700 800
Workflow execution now scales much better compared Creation requests
tO preViOUS REANA VerSion (_58% execution t|me) Job creation operations (E3: Profiling job scheduling/48 nodes/1850 MiB)
15 JAFTER
. B L v —— manager:before_execution
Lesson: avoid or reduce disk access along critical path 5 1°1 - menagerenectte
© — manager:create_job_In_¢
g 0.5 " o manager:cachejob
0.0— Pwrwre T w Lkl L n A b R e " .

0 100 200 300 400 500 600 700 800
Creation requests

Episode 4: Improving Kerberos authentication

Kerberos is needed to avoid rate limits on EOSPUBLIC, where the
input datasets are stored and read from

“Sidecar” container periodically renews Kerberos tickets

In REANA 0.9.3, the sidecar container also periodically checks if the
job has finished, to stop the renewal loop. Periodic polling is done
every 15s, so there can be some wait time between the end of the job
(t1) and when the sidecar container actually stops (t2).

To reduce the wait time, the sidecar container is now notified when
the job finishes (-9% execution time)

Lesson: periodic polling is easy but not always suitable; polling
periods need to be carefully tuned

Kerberos sidecar
Job

t0 t1 t2 time

Workflow execution time

1600 —— E2: First success
~—— E3: Profiling job scheduling
1400 4 —— E4: Improving Kerberos authentication

T T T T y
3 6 12 24 48
Number of nodes

Wait time of Kerberos sidecar after job end

E3: Profiling job scheduling - | | |

E4: Improving Kerberos authentication H

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Wait time (s)

12

Execution time (48 nodes/1850 MiB)

866

B E2: First success

s E3: Profiling job scheduling

mmm E4: Improving Kerberos authentication
EEm ES: User secrets

800

Episode 5: User secrets

600 1

400 -

Execution time (s)

REANA stores user secrets needed by
workflow runs (e.g. keytab files) as
Kubernetes secrets

04

LateSt VerS|0n Of REANA Improves creation operations (E4: Improving Kerberos authentication/48 nodes/1850 MiB)

secrets handling by fetching secrets 10 W

from Kubernetes once per workflow § 10 e ¢
instead of once per job (-14% execution g10-3-BEFORE

time), thus speeding up job creation § 100 200 300 400 500 600 700 e00

Creation requests

Job creation operations (E5: User secrets/48 nodes/1850 MiB)

Lesson: cache and re-use data from AFTER

—
o
e

external systems if possible to avoid 310 T
network CallS § - | ‘ ’ I | ’ —— k8s-manager:_submit

0 100 200 300 400 500 600 700 800
Creation requests 13

Episode 6: Database connections

REANA spawns one “orchestrator” pod per workflow, which needs
database access

When running hundreds of workflows, many concurrent
connections to the database become an issue

In REANA 0.9.3, the orchestrator pod closes the database
connection after each transaction

e good for long lasting jobs, as most of the time connection is
idle

e more overhead when spawning many hundreds of jobs in a
short amount of time

As of the latest version, REANA supports pgBouncer to allow the
pooling of many more concurrent connections (-7% execution
time)

Lesson: avoid or optimise database access along critical path

Execution time (48 nodes/1850 MiB)

800

o
=3
o

IS
S
=]

Execution time (s)

200

B E2: First success

mmm E3: Profiling job scheduling

WE E4: Improving Kerberos authentication
WEm ES5: User secrets

Bmm E6: Database connections

Job creation operations

rest:final status updates

manager:create_job_in_db §

I E5: User secrets
W E6: Database connections

1072

101 10°
Duration (s)

14

Pod execution progress
(E6: Database connections/48 nodes/1850 MiB)

Episode 7: Snakemake internals =

REANA configures Snakemake so that there L5 =

are never more than 300 running jobs at the Savo {7 e — g
same time -

Th'S |S good to av0|d OverWhelmlng Sma” Or 0:00:00 0:00:50 o:oiT;:Se (h:mt:)s:?iso 0:03:20 0:04:10

local clusters, but can limit the performance of Pod execution progress

(E7: Snakemake internals/48 nodes/1850 MiB)

clusters with many nodes 00 {AFTER

——- creation requested
—— created

Limit was raised to 1000 jobs. Cluster utilisation fom| ‘
slightly improved, creating jobs faster and R - ;,,'.'fl.' ______ - (, |
reaching 200 jobs running concurrently (-4% w|] — e
execution time)

0:06:00 0:06:50 0:01:40 0:02:30 0:03:20 0:04:10
Time (h:m:s)

15

Episode 8: Kubernetes optimisation

Pod execution progress
(E7: Snakemake internals/48 nodes/1850 MiB)

Mismatch between when REANA requests the L

pod creation and when the pod is created in

the cluster () gy A

T i e running.

Checking Kubernetes 1ogs, Q =

kube-controller-manager is throttling

requests to the Kubernetes API server
Time (h:m:s)

Oct 09 08:23:20 reana-test-[...]-master-0 bash[269122]: 11009 08:23:20.762301

1 request.go:629] Waited for 88.20434ms due to client-side throttling, not
priority and fairness, request:
PATCH:https://127.0.0.1:6443/api/v1/namespaces/default/pods/reana-run-job-[...]

Episode 8: Kubernetes optimisation (2)

Tuned some parameters of kube-controller-manager

e QPS to Kubernetes API server
o --kube-api-qps=200

e Burst to Kubernetes API server
o --kube-api-burst=300

e Jobs that can sync concurrently

o --concurrent-job-syncs=50
e Garbage collector workers that can sync concurrently
o --concurrent-gc-syncs=200

Cluster is now close to being fully utilised with more than 300
running jobs at the same time

Full analysis runtime showed small improvements (-7%
execution time), but cleanup of jobs is now bottleneck

Lesson: tuning application and system settings for each
deployment can have a big impact

Number of pods
B
(=]
o

Number of pods
ey
o
o

1BEFORE pmmm——————

Pod execution progress
(E7: Snakemake internals/48 nodes/1850 MiB)

——- creation requested
—— created
—— pending
running

—— running
—— finished

(theoretical max) .

O:O(IJ:OO O:O(I):SO 0:0i:40 0:02‘:30 0:03:20
Time (h:m:s)
Pod execution progress
(E8: Kubernetes optimisation/48 nodes/1850 MiB)
1AFTER

——=- creation requested
—— created
—— pending

running

—— running
—— finished

(theoretical max) .

0:00:00 0:00:50 0:01:40 0:02:30 0:03:20
Time (h:m:s)

17

Pod execution progress

L]
F I n a I reS u ItS Execution time (48 nodes/1850 Mig) (E2: First success/48 nodes/1850 MiB)
xecution time nodes, I
8001 BEFORE

866 W E2: First success
] W E3: Profiling job scheduling 700 -
800 W E4: Improving Kerberos authentication
Bmm ES: User secrets) 600 -
- o= 7. Sostemete memae 2 CrEAtonEqHER
Ru ntl m e red u Ced from & 600 - EB; Kubernetes optimisation -§_ 500 1 — Crea;'ed
. 5 —— pending
£ + 400 - i
14m26s to 3mb4s (3_7x : Sl W SR 7« O GheasedcaLeis)
'g 400 4 360 § 300 4 —— running
. % 329.7 —— finished
faster) when tested with 48 ¢ 200- i
- 234
200 100 -
nodes o] ==
1 0:06:00 0:05:20 0:0é:40 0:1(|):00 0:13|:20
Time (h:m:s)
Reached 323 peak
Workflow execution time Pod execution progress)
COnCU rrent JObS from |n Itlal 1600] — (E8: Kubernetes optimisation/48 nodes/1850 MiB)
’ —— E3: Profiling job scheduling 800 1 ——- creation requested
. 1400 - —— E4: Improving Kerberos authentication | —— created
102 jobs (3.2x more) when — s Usersecrets 700 B et
—— E6: Database connections .
. s 1200 —— E7: Snakemake internals L I Y I Y B o (rll:jf?:t;r:egtical max)
tested Wlth 48 nod eS % 1000 ~——— EB8: Kubernetes optimisation § 500 4 S ety
% g — finished
g 8009 I T A
] g R R AR B
& 6004 = 300
200 A
400
100 A
200 -
0. AFTER
== : B " s 0:00:00 0:03:20 0:06:40 0:10:00 0:13:20

Number of nodes Time (h:m:s)

Conclusions

e Snakemake and declarative workflows can efficiently
express massively-parallel particle physics
computational paradigms

e Analysis Grand Challenge project is very useful to
optimise performance of analysis platforms

e Optimisations allowed to improve REANA
performance for massively-parallel workflows by a
factor of ~3x

This work was partially supported by the U.S. National Science Foundation (NSF)
under Cooperative Agreement OAC-2226378, OAC-2226379 and OAC-2226380
(FAIROS-HEP) in collaboration with OAC-1836650 and PHY-2323298 (IRIS-HEP)

h

t

S

tps://snakemake.readthedocs.io

reana

https://www.reana.io/

CE/RW
\

NS

https://home.cern/

@'

titute for Research & Innovation

in Software for High Energy Physics

https://iris-hep.ora/

19

https://iris-hep.org/
https://www.reana.io/
https://home.cern/
https://snakemake.readthedocs.io

Backup slides

All results

Execution time (s) 3 nodes”* 6 nodes* 12 nodes* 24 nodes* 48 nodes”
E1: First run - - - - -
E2: First success 1612 830 854 863 866
E3: Profiling job scheduling 1634 884 494 367 364
E4: Improving Kerberos authentication 1415 691 421 331 330
ES: User secrets 1430 731 405 281 283
E6: Database connections 1417 704 415 299 262
E7: Snakemake internals 1415 724 394 264 252
E8: Kubernetes optimisation 1473 714 410 266 234
*execution time of one run *average execution time of three runs

21

Theoretical maximum number of running jobs

e Each job requests 1850MiB of RAM

e Each node has 15GB of memory, but not all of it is available to jobs

e \When cluster is idle, we have measured up to 14 GiB of free memory in a
single node

e 14GiB/ 1850MiB = at most 7 jobs can run concurrently in a single node

e In the whole cluster:

o at most 21 jobs with 3 nodes
at most 42 jobs with 6 nodes
at most 84 jobs with 12 nodes
at most 168 jobs with 24 nodes
at most 336 jobs with 48 nodes

o O O O

22

