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● The goal of the AGC is to test workflows 
designed for the HL-LHC by running 
representative analyses.

● Limited agreement in the broader field 

about how HL-LHC analysis will look like

Main idea to factorize the challenges:

○ One of the projects is focused on data 

throughput e.g. 200 Gbps

library development, 
deeper Dask integration, 
custom schedulers, …

library benchmarking, 
scaling to more cores, 

heterogeneous 
resources, …

Analysis Grand Challenge and 200 Gbps

data throughput

total computational 
cost

analysis 
complexity

storage, network, 
decompression 

speed, …
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https://agc.readthedocs.io/en/latest/


● Simplified analysis setup compared to what is done in Analysis Grand Challenge (AGC)
○ Analysis “straight from NanoAOD” with all required computations on-the-fly using CMS Run 3 

NanoAOD (90 TB x 2)

○ Implemented as Uproot and Coffea notebooks 

○ Goal to gradually add back functionality to match AGC

Scaling to HL-LHC: the 200 Gbps setup
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The goal is to read 25% branches out 
of 180 TB dataset and to process it 

in 30 minutes 

In case of NanoAOD (~2 kB event size), 
the dataset size should  be 90 B events 
and to analyze it at 50 MHz

With current rate 25 kHz / core, 

we will need 2000 cores 

(12.5 MB/s per core)

This will require to tune facility setup to 
make sure we can reach the requested rate!

https://github.com/iris-hep/idap-200gbps


Adding additional services to improve analysis throughput
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XCache - service 
provides caching of 
data accessed using 
xrootd protocol

ServiceX - data 
extraction and delivery 
delivery service

Preparing next generation of Analysis Facilities

(Servicex setup was covered in the talk of Rob Gardner)

200 Gbps

200 Gbps



XCache deployment at Nebraska

• Deployed in Kubernetes using charts
• Total setup 8 XCache servers with node affinity
• XCache backed by NVMe storage
• Each XCache host has dual 100 Gbps networking to the Kubernetes core switch
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100 cores 200 cores 300 cores

xrdcp test on various number of Dask workers 

200 Gbps



Running analysis frameworks and tools at scale

• Adopt diverse computing executors to support execution of complex task 
graphs

• Dask, TaskVine

• Flexible computing resource provisioning model optimised for given facility

• Kubernetes, Tier-2 resources, HPC cluster

• e.g. Dask Gateway, dask-jobqueue, Dask Operator
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Preparing next generation of Analysis Facilities



Scaling with Dask and TaskVine
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Douglas Thain: TaskVine Overview | Video • Slides

Dask Distributed

https://youtu.be/8SWB_L--EUU
https://docs.google.com/presentation/u/0/d/1j7UVptxrwSWHOBfoVtjgrXRGyw_CJH9MhH2GzRdP5C0/mobilepresent#slide=id.g2f8cd152236_0_179
https://distributed.dask.org/en/stable/
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XCache Pods given node affinity and local 
NVME storage (JBOD)

Nebraska coffea-casa facility - HTCondor setup
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TaskVine stats running over 1200 cores

Data rate (Gbps)

    steady state 224.6 Gbps

    overall 221.1 Gbps

    max seen 240 Gbps

Time IO 35 min 30s

Time IO + accum results 36min 12s

Number of files 63,762

Files with errors 17

Total read (compressed) 58.33 TB

Total read (uncompressed) 139.03 TB

Total cores 1200 (150 8-core workers)

Core efficiency 92%  (1114.67 cores)

event rate 
(aggregated time 
spent in function): 
35.34 kHz 9



1200 cores across 150 8-core workers

as seen by xcache

workers connecting + 
setting conda env

IO + accumulation accumulation
+ stragglers
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200 Gbps



Dask + HTCondor stats running over 1300 cores:
Rate over time and runtime to access each file

event rate (aggregated time spent in function): event rate 
(aggregated time spent in function): 27.66 kHz
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● 2 x 100 Gbps uplinks per  
hardware node

● XCache k8s pods given 
node affinity and local 
NVME storage (JBOD)
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Switches

Pure Kubernetes facility: Dask Gateway Networking
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Dask + Kubernetes running over 400 workers:
Rate over time and runtime to access each file
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Monitoring
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analyzing resource usage patterns (all users)

tracking dask worker allocation and usage patterns (per user)
checking popularity of images between users



● Very successful exercise format: huge amount of progress and 
activity within 8 weeks

● Faced some challenges with memory use and scaling to all available 
resources

● NanoAOD: very large effect of compression algorithm: switching from 
LZMA to ZSTD brought 2.5x event processing rate improvement

● Scaling Dask to 2k+ workers generally works fine, need more testing 
combining large numbers of workers and very complex graphs

● Good performance observed also with TaskVine as alternative 
scheduler for graphs

● Scale of challenge allowed to identify new bottlenecks (many of which 
have already been fixed)

(Some of the) lessons learned
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