
CHEP 2024, 19–25 Oct 2024

Tuning the CMS Coffea-casa facility
for 200 Gbps Challenge
Oksana Shadura, Andrew Wightman, Carl Lundstedt, Derek Weitzel, Garhan Attebury, John
Thiltges, Kenneth Bloom, Sam Albin (University Nebraska-Lincoln)

Alexander Held (University of Wisconsin-Madison)

Benjamin Tovar Lopez (University of Notre Dame)

Brian Bockelman (Morgridge Institute for Research)

1
This work was supported by the U.S. National Science Foundation (NSF) cooperative agreements OAC-1836650 and PHY-2323298 (IRIS-HEP).

https://indico.cern.ch/event/1338689/

● The goal of the AGC is to test workflows
designed for the HL-LHC by running
representative analyses.

● Limited agreement in the broader field

about how HL-LHC analysis will look like

Main idea to factorize the challenges:

○ One of the projects is focused on data

throughput e.g. 200 Gbps

library development,
deeper Dask integration,
custom schedulers, …

library benchmarking,
scaling to more cores,

heterogeneous
resources, …

Analysis Grand Challenge and 200 Gbps

data throughput

total computational
cost

analysis
complexity

storage, network,
decompression

speed, …

2

https://agc.readthedocs.io/en/latest/

● Simplified analysis setup compared to what is done in Analysis Grand Challenge (AGC)
○ Analysis “straight from NanoAOD” with all required computations on-the-fly using CMS Run 3

NanoAOD (90 TB x 2)

○ Implemented as Uproot and Coffea notebooks

○ Goal to gradually add back functionality to match AGC

Scaling to HL-LHC: the 200 Gbps setup

3

The goal is to read 25% branches out
of 180 TB dataset and to process it

in 30 minutes

In case of NanoAOD (~2 kB event size),
the dataset size should be 90 B events
and to analyze it at 50 MHz

With current rate 25 kHz / core,

we will need 2000 cores

(12.5 MB/s per core)

This will require to tune facility setup to
make sure we can reach the requested rate!

https://github.com/iris-hep/idap-200gbps

Adding additional services to improve analysis throughput

4

XCache - service
provides caching of
data accessed using
xrootd protocol

ServiceX - data
extraction and delivery
delivery service

Preparing next generation of Analysis Facilities

(Servicex setup was covered in the talk of Rob Gardner)

200 Gbps

200 Gbps

XCache deployment at Nebraska

• Deployed in Kubernetes using charts
• Total setup 8 XCache servers with node affinity
• XCache backed by NVMe storage
• Each XCache host has dual 100 Gbps networking to the Kubernetes core switch

5

100 cores 200 cores 300 cores

xrdcp test on various number of Dask workers

200 Gbps

Running analysis frameworks and tools at scale

• Adopt diverse computing executors to support execution of complex task
graphs

• Dask, TaskVine

• Flexible computing resource provisioning model optimised for given facility

• Kubernetes, Tier-2 resources, HPC cluster

• e.g. Dask Gateway, dask-jobqueue, Dask Operator

6

Preparing next generation of Analysis Facilities

Scaling with Dask and TaskVine

7
Douglas Thain: TaskVine Overview | Video • Slides

Dask Distributed

https://youtu.be/8SWB_L--EUU
https://docs.google.com/presentation/u/0/d/1j7UVptxrwSWHOBfoVtjgrXRGyw_CJH9MhH2GzRdP5C0/mobilepresent#slide=id.g2f8cd152236_0_179
https://distributed.dask.org/en/stable/

K8s Resource
"Flatiron"

Flatiron Node
Xcache Pod - 3

Flatiron Node
Xcache Pod - 2

User Jupyter Pod
(Taskvine/Dask

Scheduler)

Flatiron Node
Xcache Pod - 1

Flatiron Node
XCache Pod: 0-4

Flatiron Node
Xcache Pod - 3

Flatiron Node
Xcache Pod - 2

Flatiron Node
Xcache Pod - 1

Flatiron Node
XCache Pod: 5-8

T2 Resource
"Red"

10 - 100 Gbps per node

Flatiron Node
Xcache Pod - 3

Flatiron Node
Xcache Pod - 2

Flatiron Node
Xcache Pod - 1

Red Node
Taskvine/Dask Workers

2x100G
bps

U
plinks per node

Flatiron Node
Xcache Pod - 3

Flatiron Node
Xcache Pod - 2

Flatiron Node
Xcache Pod - 1

Red Node
Taskvine/Dask Workers

Flatiron Node
Xcache Pod - 3

Flatiron Node
Xcache Pod - 2

Flatiron Node
Xcache Pod - 1

Red Node
Taskvine/Dask Workers

 D
ell S

5232F-O
N

TO
R

 S
w

itches
TO

R
 S

w
itches

TO
R

 S
w

itches

 D
ell S

5232F-O
N

C
ore S

w
itch

TOR Speeds Vary:
2x 40Gbps,
4x 40Gbps,
6x 40Gbps,
2x 100Gbps

2x200G
bps

U
plinks per
sw

itch

XCache Pods given node affinity and local
NVME storage (JBOD)

Nebraska coffea-casa facility - HTCondor setup

8

TaskVine stats running over 1200 cores

Data rate (Gbps)

 steady state 224.6 Gbps

 overall 221.1 Gbps

 max seen 240 Gbps

Time IO 35 min 30s

Time IO + accum results 36min 12s

Number of files 63,762

Files with errors 17

Total read (compressed) 58.33 TB

Total read (uncompressed) 139.03 TB

Total cores 1200 (150 8-core workers)

Core efficiency 92% (1114.67 cores)

event rate
(aggregated time
spent in function):
35.34 kHz 9

1200 cores across 150 8-core workers

as seen by xcache

workers connecting +
setting conda env

IO + accumulation accumulation
+ stragglers

10

200 Gbps

Dask + HTCondor stats running over 1300 cores:
Rate over time and runtime to access each file

event rate (aggregated time spent in function): event rate
(aggregated time spent in function): 27.66 kHz

11

K8s Resource "Flatiron"

Flatiron Node
Xcache Pod - 3

Flatiron Node
Xcache Pod - 2

User Jupyter Pod
(Notebook)

Flatiron Node
Xcache Pod - 1

Flatiron Node
XCache Pod: 0-4

Flatiron Node
Xcache Pod - 3

Flatiron Node
Xcache Pod - 2

Flatiron Node
Xcache Pod - 1

Flatiron Node
XCache Pod: 5-8

Dask Gateway created
Scheduler Pod

Flatiron Node
Xcache Pod - 3

Flatiron Node
Xcache Pod - 2

Flatiron Node
Xcache Pod - 1

Dask Worker Pod

Flatiron Node
Xcache Pod - 3

Flatiron Node
Xcache Pod - 2

Flatiron Node
Xcache Pod - 1
Dask Worker Pod

● 2 x 100 Gbps uplinks per
hardware node

● XCache k8s pods given
node affinity and local
NVME storage (JBOD)

 D
ell S

5232F-O
N

 D
ell S

5232F-O
N

Cluster
Switches

Pure Kubernetes facility: Dask Gateway Networking

12

Dask + Kubernetes running over 400 workers:
Rate over time and runtime to access each file

13

Monitoring

14

analyzing resource usage patterns (all users)

tracking dask worker allocation and usage patterns (per user)
checking popularity of images between users

● Very successful exercise format: huge amount of progress and
activity within 8 weeks

● Faced some challenges with memory use and scaling to all available
resources

● NanoAOD: very large effect of compression algorithm: switching from
LZMA to ZSTD brought 2.5x event processing rate improvement

● Scaling Dask to 2k+ workers generally works fine, need more testing
combining large numbers of workers and very complex graphs

● Good performance observed also with TaskVine as alternative
scheduler for graphs

● Scale of challenge allowed to identify new bottlenecks (many of which
have already been fixed)

(Some of the) lessons learned

15

16

This presentation summarizes a large body of work across IRIS-HEP and USCMS:

‣ Fermilab: Lindsey Gray, Nick Smith
‣ Morgridge: Brian Bockelman
‣ Notre Dame: Ben Tovar
‣ Princeton: Jim Pivarski, David Lange
‣ U. Nebraska: Sam Albin, Garhan Attebury, Carl Lundstedt, Ken Bloom, Oksana Shadura,

John Thiltges, Derek Weitzel, Andrew Wightman
‣ U. Wisconsin: Alex Held (co-coordinator)

