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Analysis Computing
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Production:
● High performance algorithms written in C++
● Input: Petabytes of data
● Output: Terabytes of analysis data (NanoAOD)
● Computing Scale: Millions of jobs running over 

long time scales operated by small team of 
experts

Analysis:
● User code written in Python and/or C++, includes 

histogram filling, fitting, and visualization
● Input: Terabytes of analysis data (NanoAOD)
● Output: Kilobytes of histograms, data tables, etc.
● Computing scale: Thousands of jobs running 

over relatively short time scales (hours) run by 
many different non-expert users (e.g. grad 
students)

Focus of this talk



Drilling Down in Analysis
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Analysis data format (nanoAOD) Histograms Statistical analysis & 
visualization

Focus on this step:
● Applying corrections and selecting events
● Calculating quantities of interest
● Filling histograms



Reshaping
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High Throughput:
N nodes for 60 minutes

High Concurrency
N*10 nodes for 6 minutesHow easily can you trade time 

for space in a distributed 
system?

(Courtesy of Doug Thain)
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Challenges:
● Expressing the computation in a flexible 

enough way that the reshaping 
transformation is feasible.

● Dealing with overheads and latencies that 
spoil ideal performance



Analysis Software Paradigm
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User writes “numpy-like” code → converted into form easily executed on distributed resources.

See CHEP23 talk on Coffea + Dask

https://indico.jlab.org/event/459/contributions/11533/attachments/9496/13762/CoffeaCHEP_LindseyGray_09052023.pdf
https://indico.jlab.org/event/459/contributions/11533/attachments/9496/13762/CoffeaCHEP_LindseyGray_09052023.pdf
https://indico.jlab.org/event/459/contributions/11533/attachments/9496/13762/CoffeaCHEP_LindseyGray_09052023.pdf


Software Stack (conceptually)

● Application code: User writes 
“regular” numpy-like software 
expressing physics intent

● Task Graph Manager: 
Computations decomposed into 
graph form

● Task and Data Schedule: Graph 
is used to move data and schedule 
computation.

● Cluster Nodes: Computation is 
executed on data to produce 
results.
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Software Stack
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Example Application: DV

● DV application calculates energy correlation functions (ECFs) on jets
○ ECFs probe jet substructure
○ Calculated using jet constituents (PFCandidates)
○ Computationally heavy–calculating up to 5-point correlations (previously 

considered infeasible)
● Input:

○ Modified analysis format that stores jet constituents (PFnano)
○ ~20 million (160 GB) – one dataset

● Output:
○ 5.7 million events (7.6 GB)
○ ~160 ECFs stored in parquet files
○ To be used for ML training

● Resources
○ 4-6k CPU cores
○ 400 GB disk
○ 2 GB/core memory
○ 6-8 hours
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Graph for one chunk of data

Connor Moore
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Full Graph for DV (All Chunks)



Performance requires on dealing with overhead

● Key is being able to start 
many tasks quickly with 
low overhead

● Overhead and latency 
starting tasks can 
dramatically slow 
performance, limiting the 
benefits of high 
concurrency
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Performance optimization
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Application

Coffea

Dask

Work 
Queue

Hadoop

Application

Coffea

Dask

TaskVine
+ Functions

VAST

Significant performance improvement within same application by 
swapping out bottom two layers (task/data scheduler and file system

Barry Sly-DelgadoTalk at SC24

https://sc24.conference-program.com/presentation/?id=pap168&sess=sess383


Performance optimization
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Work 
Queue

Hadoop

TaskVine
+ Functions

VAST

TaskVine + Functions:
● More efficient distribution of graph payloads
● Smarter data caching
● Peer-to-peer data sharing between workers in 

the cluster.

Vast: high performance NVMe storage compared to Hadoop on 
spinning disks

No p2p sharing Sharing in cluster

Reducing overhead 
and latency improved 
performance by 20x in 
this example!



Potential for further optimization

● Having graph representation of tasks opens many possibilities
○ Analyze graph structure and reorganize for better performance (e.g. minimize I/O)
○ Intelligent checkpointing and caching accelerating graph evaluation under small variations in 

analysis code
○ Exploring alternative graph scheduling strategies (breadth first vs depth first): maximizing 

performance versus satisfying constraints on storage or memory
○ Improving performance under worker failure by caching some results in shared storage
○ Intelligently scheduling graph nodes on appropriate resources (GPU vs CPU)

● Only just beginning to tap potential of this approach!
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Challenges to be tackled

● Intermediate data products transferred between task nodes via file system: 
can result in large temporary storage requirements and compression robs you 
of processing time

● With current tools, extremely difficult to correlate task failures with lines in 
source code.  Need improved debugging capabilities to link graph to original 
source code statements

● Communicating the right information back to the users so that they can spot 
and resolve performance bottlenecks (I/O, memory, or storage limitations)
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Conclusions

● Columnar analysis → Task graphs represents an exciting new paradigm in 
writing analysis software

● Task graphs offer rich and flexible expression of computing tasks that appear 
to be highly amenable to automated analysis and optimization, such as 
reshaping

● The effectiveness of reshaping relies on our ability to minimize overhead and 
latency at beginning and end of tasks

● Stay tuned for further developments!
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