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Analysis Computing
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e Focus of this talk
Production: Analysis:
e High performance algorithms written in C++ e User code written in Python and/or C++, includes
e Input: Petabytes of data histogram filling, fitting, and visualization
e Output: Terabytes of analysis data (NanoAOD) e Input: Terabytes of analysis data (NanoAOD)
e Computing Scale: Millions of jobs running over e Output: Kilobytes of histograms, data tables, etc.
long time scales operated by small team of e Computing scale: Thousands of jobs running

experts
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over relatively short time scales (hours) run by
many different non-expert users (e.g. grad
students)




CMS Preliminary 138 fb' (13 TeV)
s s

2ANLL

Drilling Down in Analysis
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Focus on this step:
e Applying corrections and selecting events
e Calculating quantities of interest

e Filling histograms
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Reshaping ) High Concurren_cy
How easily can you trade time ~ N*10 nodes for 6 minutes

A for space in a distributed A
system?
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Reshaping ) High Concurren_cy
How easily can you trade time ~ N*10 nodes for 6 minutes

A for space in a distributed
system? T

Actual

Challenges:

e EXxpressing the computation in a flexible
enough way that the reshaping
transformation is feasible.

e Dealing with overheads and latencies that
spoil ideal performance

Nodes Running
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Analysis Software Paradigm

-
numpy vector operation - fast

* Columnar analysis:
- Load relevant values for many events into contiguous arrays
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- Evaluate several array programming expressions [
* Implicit inner loops |
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* Plan analysis by composing data manipulations
- Store derived values
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See CHEP23 talk on Coffea + Dask
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User writes “numpy-like” code — converted into form easily executed on distributed resources.
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https://indico.jlab.org/event/459/contributions/11533/attachments/9496/13762/CoffeaCHEP_LindseyGray_09052023.pdf
https://indico.jlab.org/event/459/contributions/11533/attachments/9496/13762/CoffeaCHEP_LindseyGray_09052023.pdf
https://indico.jlab.org/event/459/contributions/11533/attachments/9496/13762/CoffeaCHEP_LindseyGray_09052023.pdf
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Application def H()s(): S
Code plot(reduce(H,map(F,A))
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Software Stack (conceptually)

e Application code: User writes
“regular’” numpy-like software
expressing physics intent

e Task Graph Manager:
Computations decomposed into
graph form

e Task and Data Schedule: Graph
is used to move data and schedule
computation.

e Cluster Nodes: Computation is
executed on data to produce
results.

(Courtesy of Doug Thain)



Software Stack
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Example Application: DV

e DV application calculates energy correlation functions (ECFs) on jets

o  ECFs probe jet substructure Connor Moore
o  Calculated using jet constituents (PFCandidates)
o  Computationally heavy—calculating up to 5-point correlations (previously ©)
considered infeasible) b
e Input: e
o Modified analysis format that stores jet constituents (PFnano) / ) iy
o ~20 million (160 GB) — one dataset s TR
e Output: === <
o 5.7 million events (7.6 GB) o TN N,
o  ~160 ECFs stored in parquet files =7 & &S oy

o To be used for ML training
e Resources

o 4-6k CPU cores =
o 400 GB disk }
o 2 GB/core memory

o  6-8 hours

Graph for one chunk of data <>
[ RotRE DA [ ==




Full Graph for DV (All Chunks)
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Performance requires on dealing with overhead

e Key is being able to start
many tasks quickly with
low overhead

e Overhead and latency
starting tasks can
dramatically slow
performance, limiting the
benefits of high
concurrency
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Performance optimization

tasks instantaneous counts

tasks instantaneous counts Application p—

Application

7000 - T waiting  =———
on workers ——e— 4008 = . vr\:]onrrlizienrs _._—o—
6000 running —a— Wi resultg ——

Coffea with results —#— Coffea 3500 :-

. 5000 % 3000 -
é 2 2500
D k 2 4000 D k “E
as 2 as 3 2000 -
O o)
2 3000 - £
£ 2 1500 -
=
2000 1000 -
1000 500 -
0 o —— . . .
Hadoop 0 10 20 30 40 50 60 VAST . e : ke e e .
manager lifetime in minutes
manager lifetime in minutes

Significant performance improvement within same application by
swapping out bottom two layers (task/data scheduler and file system

?q'BTvﬁEsﬁR’i\fE y. Talk at SC24 —— Barry Sly-Delgado



https://sc24.conference-program.com/presentation/?id=pap168&sess=sess383

No p2p sharing Sharing in cluster

Performance optimization
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TaskVine + Functions:
e More efficient distribution of graph payloads

e Smarter data caching

e Peer-to-peer data sharing between workers in Reducing overhead
the cluster. and latency improved

performance by 20x in

[ Hadoop } »[ VAST } this example!

Vast: high performance NVMe storage compared to Hadoop on
spinning disks
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Potential for further optimization

e Having graph representation of tasks opens many possibilities

o Analyze graph structure and reorganize for better performance (e.g. minimize 1/0)

o Intelligent checkpointing and caching accelerating graph evaluation under small variations in
analysis code

o Exploring alternative graph scheduling strategies (breadth first vs depth first): maximizing
performance versus satisfying constraints on storage or memory

o Improving performance under worker failure by caching some results in shared storage

o Intelligently scheduling graph nodes on appropriate resources (GPU vs CPU)

e Only just beginning to tap potential of this approach!
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Challenges to be tackled

e Intermediate data products transferred between task nodes via file system:
can result in large temporary storage requirements and compression robs you
of processing time

e With current tools, extremely difficult to correlate task failures with lines in
source code. Need improved debugging capabilities to link graph to original
source code statements

e Communicating the right information back to the users so that they can spot
and resolve performance bottlenecks (I/O, memory, or storage limitations)
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Conclusions

e Columnar analysis — Task graphs represents an exciting new paradigm in
writing analysis software

e Task graphs offer rich and flexible expression of computing tasks that appear
to be highly amenable to automated analysis and optimization, such as
reshaping

e The effectiveness of reshaping relies on our ability to minimize overhead and
latency at beginning and end of tasks

e Stay tuned for further developments!
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