
Reshaping Analysis for Fast
Turnaround

 Kevin Lannon, Connor Moore, Barry Sly-Delgado,
Douglas Thain, Benjamin Tovar, Austin Townsend, Jin Zhou

Analysis Computing

2

Production:
● High performance algorithms written in C++
● Input: Petabytes of data
● Output: Terabytes of analysis data (NanoAOD)
● Computing Scale: Millions of jobs running over

long time scales operated by small team of
experts

Analysis:
● User code written in Python and/or C++, includes

histogram filling, fitting, and visualization
● Input: Terabytes of analysis data (NanoAOD)
● Output: Kilobytes of histograms, data tables, etc.
● Computing scale: Thousands of jobs running

over relatively short time scales (hours) run by
many different non-expert users (e.g. grad
students)

Focus of this talk

Drilling Down in Analysis

3

Analysis data format (nanoAOD) Histograms Statistical analysis &
visualization

Focus on this step:
● Applying corrections and selecting events
● Calculating quantities of interest
● Filling histograms

Reshaping

4

Ideal

N
od

es
 R

un
ni

ng

Elapsed Time

N
od

es
 R

un
ni

ng

Elapsed Time

Ideal

Actual

Actual

High Throughput:
N nodes for 60 minutes

High Concurrency
N*10 nodes for 6 minutesHow easily can you trade time

for space in a distributed
system?

(Courtesy of Doug Thain)

Reshaping

5

Ideal

N
od

es
 R

un
ni

ng

Elapsed Time

N
od

es
 R

un
ni

ng

Elapsed Time

Ideal

Actual

Actual

High Throughput:
N nodes for 60 minutes

High Concurrency
N*10 nodes for 6 minutesHow easily can you trade time

for space in a distributed
system?

(Courtesy of Doug Thain)

Challenges:
● Expressing the computation in a flexible

enough way that the reshaping
transformation is feasible.

● Dealing with overheads and latencies that
spoil ideal performance

Analysis Software Paradigm

6

User writes “numpy-like” code → converted into form easily executed on distributed resources.

See CHEP23 talk on Coffea + Dask

https://indico.jlab.org/event/459/contributions/11533/attachments/9496/13762/CoffeaCHEP_LindseyGray_09052023.pdf
https://indico.jlab.org/event/459/contributions/11533/attachments/9496/13762/CoffeaCHEP_LindseyGray_09052023.pdf
https://indico.jlab.org/event/459/contributions/11533/attachments/9496/13762/CoffeaCHEP_LindseyGray_09052023.pdf

Software Stack (conceptually)

● Application code: User writes
“regular” numpy-like software
expressing physics intent

● Task Graph Manager:
Computations decomposed into
graph form

● Task and Data Schedule: Graph
is used to move data and schedule
computation.

● Cluster Nodes: Computation is
executed on data to produce
results.

7

Application
Code

Task
Graph
Manager

Task
and Data
Scheduler

def F(x): . . .
def H(s): . . .
plot(reduce(H,map(F,A))

Cluster
Nodes

. . .
(C

ou
rte

sy
 o

f D
ou

g
Th

ai
n)

Software Stack

8

Application
Code

Task
Graph
Manager

Task
and Data
Scheduler

def F(x): . . .
def H(s): . . .
plot(reduce(H,map(F,A))

Cluster
Nodes . . .

Coffea

dask-awkward

Example Application: DV

● DV application calculates energy correlation functions (ECFs) on jets
○ ECFs probe jet substructure
○ Calculated using jet constituents (PFCandidates)
○ Computationally heavy–calculating up to 5-point correlations (previously

considered infeasible)
● Input:

○ Modified analysis format that stores jet constituents (PFnano)
○ ~20 million (160 GB) – one dataset

● Output:
○ 5.7 million events (7.6 GB)
○ ~160 ECFs stored in parquet files
○ To be used for ML training

● Resources
○ 4-6k CPU cores
○ 400 GB disk
○ 2 GB/core memory
○ 6-8 hours

9
Graph for one chunk of data

Connor Moore

10

Full Graph for DV (All Chunks)

Performance requires on dealing with overhead

● Key is being able to start
many tasks quickly with
low overhead

● Overhead and latency
starting tasks can
dramatically slow
performance, limiting the
benefits of high
concurrency

11

Ideal

N
od

es
 R

un
ni

ng
Elapsed Time

Actual

(Courtesy of Doug Thain)

Delay
from
overhead

Performance optimization

12

Application

Coffea

Dask

Work
Queue

Hadoop

Application

Coffea

Dask

TaskVine
+ Functions

VAST

Significant performance improvement within same application by
swapping out bottom two layers (task/data scheduler and file system

Barry Sly-DelgadoTalk at SC24

https://sc24.conference-program.com/presentation/?id=pap168&sess=sess383

Performance optimization

13

Work
Queue

Hadoop

TaskVine
+ Functions

VAST

TaskVine + Functions:
● More efficient distribution of graph payloads
● Smarter data caching
● Peer-to-peer data sharing between workers in

the cluster.

Vast: high performance NVMe storage compared to Hadoop on
spinning disks

No p2p sharing Sharing in cluster

Reducing overhead
and latency improved
performance by 20x in
this example!

Potential for further optimization

● Having graph representation of tasks opens many possibilities
○ Analyze graph structure and reorganize for better performance (e.g. minimize I/O)
○ Intelligent checkpointing and caching accelerating graph evaluation under small variations in

analysis code
○ Exploring alternative graph scheduling strategies (breadth first vs depth first): maximizing

performance versus satisfying constraints on storage or memory
○ Improving performance under worker failure by caching some results in shared storage
○ Intelligently scheduling graph nodes on appropriate resources (GPU vs CPU)

● Only just beginning to tap potential of this approach!

14

Challenges to be tackled

● Intermediate data products transferred between task nodes via file system:
can result in large temporary storage requirements and compression robs you
of processing time

● With current tools, extremely difficult to correlate task failures with lines in
source code. Need improved debugging capabilities to link graph to original
source code statements

● Communicating the right information back to the users so that they can spot
and resolve performance bottlenecks (I/O, memory, or storage limitations)

15

Conclusions

● Columnar analysis → Task graphs represents an exciting new paradigm in
writing analysis software

● Task graphs offer rich and flexible expression of computing tasks that appear
to be highly amenable to automated analysis and optimization, such as
reshaping

● The effectiveness of reshaping relies on our ability to minimize overhead and
latency at beginning and end of tasks

● Stay tuned for further developments!

16

The Team

17

Notre Dame CMS Graduate Students

Connor Moore Austin Townsend

Notre Dame Cooperative Computing Lab

Doug Thain
(Director)

Ben Tovar
(Res. Software Eng.)

Barry Sly-Delgado
(Grad Student)

Jin Zhou
(Grad Student)

