
Development of Auto-Validation System of BOSS
Di Jiang1,2, Ye Yuan1,2, Xiaobin Ji1,2, Qiumei Ma1, Yao Zhang1

1Institute of High Energy Physics
2University of Chinese Academy of Sciences

Motivation
BOSS, which stands for BES Offline Software System, uses CVS as a version control system. As a result, BOSS is maintained and updated manually. However, modern 
development tools automatically maintain and update projects, including automatic compilation, validation, feedback provision, and real-time on-site release of new versions. In 
comparison, CVS appears to be very inefficient. Therefore, the version control system of BOSS needs to be upgraded. However, refactoring a large-scale operational system like 
BOSS can be challenging and difficult to implement. Changing established habits requires careful consideration. In the meantime, we can focus on upgrading our software 
development process based on CVS.

Auto-Validation System of BOSS

Validation Result 

developer Trigger CVS 
repositoryValidation Commit

yes

no

The idea is to provide an automatization script that is integrated with cvs to perform 
validation before committing changes. Here is an example command: 

cvs commit –v 7.1.0.d –m ‘test’
And the flowchart is shown as the following figure. 

Validation

 Immediate feedback on validation results by accessing the standard output.
 Allows quick identification of any issues or errors.
 Give developers the freedom to choose whether they want to validate their changes 

or not.

developer

feedback

Compile:
If it can 
compile 

smoothly? 

yes

no

FastValid:
A simple 

validation, 
if it can run 
successfully?

Optional complex 
validation:

Single particle 
MC, Physics MC.no

yes & trigger

histograms

trigger

 If the code does not compile smoothly, the developer receives feedback.
 If FastValid validation fails, feedback is provided to the developer. 
 Towards the end, two optional validations are carried out: single particle MC and 

physics MC. These validations do not reject any code but instead generate 
histograms that can be utilized for manual code evaluation.

Overall, the validation process integrates and automates the work of the Data Quality 
Validation Groups. And developers don't have to wait for feedback from the Data 
Quality Validation Group. 
However, in cases where multiple packages need to be upgraded and validated, the 
current process would fail. 

The flowchart of the validation process integrated within that script is depicted in 
the following figure.

When dealing with the validation of multiple packages, it becomes difficult for 
retrieving recent modification information from CVS. In such situations, utilizing Git 
as a cloud repository could offer a more effective solution. The flowchart is depicted 
in the following figure.

Multi-packages validation

developer cvs
commit/import

CVS 
repository

accumulate 
modifications

Git 
repository

Validation

validation validation retrieve
information

Multitask validation

cvs branch Specify 
branch

1 2 3 …

developer cvs
commit/import

CVS 
repository

accumulate 
modifications

Git 
repository

Validation

validation validation retrieve
information

Assistance of release of new version
To streamline the process for the BOSS manager, a main branch is created and managed 
by the manager for collecting validated packages automatically.

A

branch A

branch B

branch C

B
main

Manager

Choose

ValidationIf passed

…

branch A

branch B

branch C

Choose

As shown in the above figure, 
 Developers have the flexibility to choose their tasks for validation on separate 

branches. 
 Once a task passes validation, its contents are automatically transferred to the main 

branch managed by the manager. 

This streamlined approach eliminates the need for developers to individually inform the 
manager of their contributions and need of manually checking out packages.

In practice, developers often handle multiple tasks simultaneously. To make it 
convenien, a 'branch' function has been developed. 
 Developers can store modified packages in personalized branch for a specific 

task. 
 Packages within the same branch can undergo validation collectively. 
 Developers have the flexibility to select any branch for validation as needed. 

 The system can automatically transfer the content of each commit to the Git 
repository: 

https://code.ihep.ac.cn/jiangdi/BOSS
 Allows the recent modifications to accumulate in the Git repository. 

To initiate the validation process for multiple packages:
 conduct the validation after committing all changes;
 perform the validation during the last commit itself. 

The validation process can then automatically access the required information from 
the Git repository.

The final flowchart is shown in following figure.

 The system has passed α test. Participants are Yao Zhang, Qiumei Ma, 
Chunxiu Liu.

 Example results of FastValid(left two) and complex validation(right four).

Summary
 Automatic validation system based on CVS is developed.
 BOSS developers can enjoy the benefits of modern software development ideas.

User manual: https://ihepbox.ihep.ac.cn/ihepbox/index.php/s/yY4GsRO8kkMBQEI
Code: https://code.ihep.ac.cn/jiangdi/automatic-compilation-and-validation-of-boss

https://code.ihep.ac.cn/jiangdi/BOSS

	幻灯片编号 1

