
Physics Data Forge:
Unveiling the Power of I/O Systems

in CERN’s Test Infrastructure

G. Amadio, A. Sciabà, A. Peters, D. Smith, L. Mascetti CHEP 2024, Kraków, Poland

XRootD and the Path to HL–LHC

2

● Remote data access is critical in high energy physics (HEP)
○ XRootD and EOS are core components in HEP’s ecosystem

● Importance for the high luminosity LHC (HL–LHC)
○ Expected to generate 10x more data than current LHC
○ XRootD and EOS need to be able to manage this data deluge

● Project between IT and EP–SFT on RNTuple Evaluation
○ Not only about RNTuple, but also verification of storage backend
○ Verify performance and scalability of large analysis workflows

● Network upgrades from 25/100G to 100/400G in the future
○ Different behavior than usual 1G to 10G networking

● Benchmark XRootD and HTTP clients in ideal setup
○ Ensure the software is not the bottleneck with new data rates

https://slac.stanford.edu
https://cern.ch/eos

3

Are we ready for more than 50GB/s data rates?

https://cds.cern.ch/record/2759072/files/CMS-TDR-022.pdf#page=23
https://cds.cern.ch/record/2759072/files/CMS-TDR-022.pdf

CERN Testing Setup
● Hardware Configuration

○ Two high-performance nodes
■ Dual AMD EPYC 7302 16-Core CPU
■ Mellanox ConnectX-5 NIC (100Gbps)
■ 256GB Memory, 2 x 2TB NVMe SSD
■ Alma Linux 8.10
■ Linux 4.18.0-553.22.1.el8_10
■ OpenSSL 1.1.1k

● Node 1: XRootD 5.7.1 Server
○ 128GB tmpfs mount point for data

● Node 2: XRootD / HTTP Clients
○ XRootD 5.7.1
○ Davix 0.8.7, curl 7.61.1, wget 1.19.5
○ OpenSSH 8.0p1 (scp)

100Gbps 100Gbps

4

Network Tuning for
100GbE NICs

5

● Applied “standard” tunings for 100Gbps
● MTU (Maximum Transmission Unit)

○ Switch from 1500 to 9000
● TCP Congestion Control Algorithm

○ Using bbr algorithm
● TCP Optimizations

○ Increase window size
○ Increase read/write buffer size

● Increase NIC ring buffer size
○ ethtool -gG eth0

sysctl -p

net.ipv4.tcp_wmem = 4096 65536 2147483647

net.ipv4.tcp_rmem = 4096 87380 2147483647

net.core.rmem_max = 2147483647

net.core.wmem_max = 2147483647

net.core.default_qdisc = fq

net.ipv4.tcp_congestion_control = bbr

net.ipv4.tcp_mtu_probing = 1

net.core.optmem_max = 1048576

ethtool -g eth0

Ring parameters for eth0:

Pre-set maximums:

RX: 8192

RX Mini: n/a

RX Jumbo: n/a

TX: 8192

Current hardware settings:

RX: 8192

RX Mini: n/a

RX Jumbo: n/a

TX: 8192

Network Speed Verification with iperf3 (MTU=1500)

6

Effect of Scheduling Affinity (8x iperf3 server/client)

7

Effect of Jumbo Frames (MTU = 9000)

8

XRootD and HTTP Client Benchmarks

9

● Compare download speed of 10GB and 100GB files with random data
○ Files are in 128GB tmpfs mount, exposed via XRootD server
○ No authentication is used for these tests
○ However, some tests use TLS encryption
○ Link saturation achieved by running concurrent transfers
○ Downloaded file is “written” to /dev/null to avoid bottlenecks from storage devices

● Test multiple data stream support from XRootD client
○ Stream 0 is control stream, up to 15 additional data streams for up to 16 total streams
○ TLS encryption can be applied to all streams or control stream only, we test both cases
○ PgRead/PgWrite has an effect on performance, so we test with it enabled/disabled as well

Benchmark: Download 10GB File

10

Benchmark: Download 100GB File

11

Link Saturation with Concurrent 10GB File Transfers

12

TLS EncryptionNo Encryption

XRootD Client Performance with Multiple Streams

13

Download speed with xrdcp did not improve very much when adding streams.

14

Bug Report
on GitHub
Hints at the
Solution

https://github.com/xrootd/xrootd/issues/1938

XRootD Client
Extreme Copy

15

<?xml version="1.0" encoding="UTF-8"?>
<metalink version="3.0" xmlns="http://www.metalinker.org/">
 <files>
 <file name="file100G.raw">
 <resources>
 <url type="file" location="ch" preference="1">root://a@xrootd-server.cern.ch//file100G.raw</url>
 <url type="file" location="ch" preference="1">root://b@xrootd-server.cern.ch//file100G.raw</url>
 <url type="file" location="ch" preference="1">root://c@xrootd-server.cern.ch//file100G.raw</url>
 <url type="file" location="ch" preference="1">root://d@xrootd-server.cern.ch//file100G.raw</url>
 <url type="file" location="ch" preference="1">root://e@xrootd-server.cern.ch//file100G.raw</url>
 <url type="file" location="ch" preference="1">root://f@xrootd-server.cern.ch//file100G.raw</url>
 <url type="file" location="ch" preference="1">root://g@xrootd-server.cern.ch//file100G.raw</url>
 <url type="file" location="ch" preference="1">root://h@xrootd-server.cern.ch//file100G.raw</url>
 <url type="file" location="ch" preference="1">root://i@xrootd-server.cern.ch//file100G.raw</url>
 <url type="file" location="ch" preference="1">root://j@xrootd-server.cern.ch//file100G.raw</url>
 <url type="file" location="ch" preference="1">root://k@xrootd-server.cern.ch//file100G.raw</url>
 <url type="file" location="ch" preference="1">root://l@xrootd-server.cern.ch//file100G.raw</url>
 <url type="file" location="ch" preference="1">root://m@xrootd-server.cern.ch//file100G.raw</url>
 <url type="file" location="ch" preference="1">root://n@xrootd-server.cern.ch//file100G.raw</url>
 <url type="file" location="ch" preference="1">root://o@xrootd-server.cern.ch//file100G.raw</url>
 <url type="file" location="ch" preference="1">root://p@xrootd-server.cern.ch//file100G.raw</url>
 </resources>
 </file>
 </files>
</metalink>

Trace: File Download with xrdcp (1GbE)

16

Flamegraph: File Download with xrdcp (1GbE)

17

epoll_wait
do_idle

Trace: File Download with xrdcp (100GbE)

18

Trace: File Download with xrdcp (100GbE)

19

Flamegraph: File Download with xrdcp (100GbE)

20

?

do_idle

XRootD Client Current Socket to Poller Mapping

21

Event Loop Thread

Poller

URL Channel
Socket 0

PostMaster

Stream 0

Stream 1

Stream 2

Stream n

…

Socket 2

Socket 1

Socket n

Event Loop Thread

Poller

Event Loop Thread

Poller

Event Loop Thread

Poller
…

 …

Solution is to Map Sockets to Different Pollers!

22

Event Loop Thread

Poller

URL Channel
Socket 0

PostMaster

Stream 0

Stream 1

Stream 2

Stream n

…

Socket 2

Socket 1

Socket n

Event Loop Thread

Poller

Event Loop Thread

Poller

Event Loop Thread

Poller
…

 …

XRootD Client Performance with New Architecture

23

Mapping sockets from same channel to different pollers improves performance.

Summary and Conclusion

24

● Benchmarked various clients on 100GbE network
○ Comparable performance for curl, davix, and xrdcp in single-stream copies

● Identified reason for performance bottleneck in XRootD client with multiple streams
○ Plan to include the fix for this into a future release of XRootD
○ Significant impact for XCache, since it relies on the client to access original data

● Networking with 100GbE NIC behavior is different than with 1GbE NIC
○ Single CPU core not enough to process high request rates (even after tuning)
○ Need to resort to concurrent transfers for now, or multiple streams once the fix is released

● XRootD PgRead/PgWrite is not free, but good compromise in terms of performance
○ Can still easily reach 100Gbps speeds with 8 streams or more
○ For speeds beyond 200Gbps, may need to use network io_uring + pgread/pgwrite

● TLS has bigger performance impact, much higher CPU cost than PgRead/PgWrite

XRootD/XCache in the context of Analysis Facilities

26

I/O performance studies of analysis workloads on production and dedicated resources at CERN
A. Sciabà, J. Blomer, P. Canal, D. Duellmann, E. Guiraud, A. Naumann, V.E. Padulano, B. Panzer-Steindel, A.J. Peters, M. Schulz, D. Smith

https://indico.jlab.org/event/459/contributions/11613/
https://indico.jlab.org/event/459/contributions/11613/
https://indico.jlab.org/event/459/contributions/11613/

XRootD/XCache in the context of Analysis Facilities

27

XCache == single server == single channel ⇒ XRootD client is CPU bound!

Better XCache Performance by Forcing more Channels

28

Running Multiple XCache Daemons is Other “Solution”

29

After reconfiguring XCache server
with internal clustering, ROOT
performs much better for
multi-threaded analysis.

No “fake clients”
trick needed here.

