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XRootD and the Path to HL–LHC
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● Remote data access is critical in high energy physics (HEP)
○ XRootD and EOS are core components in HEP’s ecosystem

● Importance for the high luminosity LHC (HL–LHC)
○ Expected to generate 10x more data than current LHC
○ XRootD and EOS need to be able to manage this data deluge

● Project between IT and EP–SFT on RNTuple Evaluation
○ Not only about RNTuple, but also verification of storage backend
○ Verify performance and scalability of large analysis workflows

● Network upgrades from 25/100G to 100/400G in the future
○ Different behavior than usual 1G to 10G networking

● Benchmark XRootD and HTTP clients in ideal setup
○ Ensure the software is not the bottleneck with new data rates

https://slac.stanford.edu
https://cern.ch/eos
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Are we ready for more than 50GB/s data rates?

https://cds.cern.ch/record/2759072/files/CMS-TDR-022.pdf#page=23
https://cds.cern.ch/record/2759072/files/CMS-TDR-022.pdf


CERN Testing Setup
● Hardware Configuration

○ Two high-performance nodes 
■ Dual AMD EPYC 7302 16-Core CPU
■ Mellanox ConnectX-5 NIC (100Gbps)
■ 256GB Memory, 2 x 2TB NVMe SSD
■ Alma Linux 8.10
■ Linux 4.18.0-553.22.1.el8_10
■ OpenSSL 1.1.1k

● Node 1: XRootD 5.7.1 Server
○ 128GB tmpfs mount point for data

● Node 2: XRootD / HTTP Clients
○ XRootD 5.7.1
○ Davix 0.8.7, curl 7.61.1, wget 1.19.5
○ OpenSSH 8.0p1 (scp)

100Gbps 100Gbps
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Network Tuning for 
100GbE NICs
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● Applied “standard” tunings for 100Gbps
● MTU (Maximum Transmission Unit)

○ Switch from 1500 to 9000
● TCP Congestion Control Algorithm

○ Using bbr algorithm
● TCP Optimizations

○ Increase window size
○ Increase read/write buffer size

● Increase NIC ring buffer size
○ ethtool -gG eth0

# sysctl -p

net.ipv4.tcp_wmem = 4096 65536 2147483647

net.ipv4.tcp_rmem = 4096 87380 2147483647

net.core.rmem_max = 2147483647

net.core.wmem_max = 2147483647

net.core.default_qdisc = fq

net.ipv4.tcp_congestion_control = bbr

net.ipv4.tcp_mtu_probing = 1

net.core.optmem_max = 1048576

# ethtool -g eth0

Ring parameters for eth0:

Pre-set maximums:

RX: 8192

RX Mini: n/a

RX Jumbo: n/a

TX: 8192

Current hardware settings:

RX: 8192

RX Mini: n/a

RX Jumbo: n/a

TX: 8192



Network Speed Verification with iperf3 (MTU=1500)
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Effect of Scheduling Affinity (8x iperf3 server/client)
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Effect of Jumbo Frames (MTU = 9000)
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XRootD and HTTP Client Benchmarks
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● Compare download speed of 10GB and 100GB files with random data
○ Files are in 128GB tmpfs mount, exposed via XRootD server
○ No authentication is used for these tests
○ However, some tests use TLS encryption
○ Link saturation achieved by running concurrent transfers
○ Downloaded file is “written” to /dev/null to avoid bottlenecks from storage devices

● Test multiple data stream support from XRootD client
○ Stream 0 is control stream, up to 15 additional data streams for up to 16 total streams
○ TLS encryption can be applied to all streams or control stream only, we test both cases
○ PgRead/PgWrite has an effect on performance, so we test with it enabled/disabled as well



Benchmark: Download 10GB File 
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Benchmark: Download 100GB File 
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Link Saturation with Concurrent 10GB File Transfers
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TLS EncryptionNo Encryption



XRootD Client Performance with Multiple Streams
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Download speed with xrdcp did not improve very much when adding streams.
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Bug Report 
on GitHub 
Hints at the 
Solution

https://github.com/xrootd/xrootd/issues/1938


XRootD Client 
Extreme Copy
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<?xml version="1.0" encoding="UTF-8"?>
<metalink version="3.0" xmlns="http://www.metalinker.org/">
 <files>
  <file name="file100G.raw">
   <resources>
    <url type="file" location="ch" preference="1">root://a@xrootd-server.cern.ch//file100G.raw</url>
    <url type="file" location="ch" preference="1">root://b@xrootd-server.cern.ch//file100G.raw</url>
    <url type="file" location="ch" preference="1">root://c@xrootd-server.cern.ch//file100G.raw</url>
    <url type="file" location="ch" preference="1">root://d@xrootd-server.cern.ch//file100G.raw</url>
    <url type="file" location="ch" preference="1">root://e@xrootd-server.cern.ch//file100G.raw</url>
    <url type="file" location="ch" preference="1">root://f@xrootd-server.cern.ch//file100G.raw</url>
    <url type="file" location="ch" preference="1">root://g@xrootd-server.cern.ch//file100G.raw</url>
    <url type="file" location="ch" preference="1">root://h@xrootd-server.cern.ch//file100G.raw</url>
    <url type="file" location="ch" preference="1">root://i@xrootd-server.cern.ch//file100G.raw</url>
    <url type="file" location="ch" preference="1">root://j@xrootd-server.cern.ch//file100G.raw</url>
    <url type="file" location="ch" preference="1">root://k@xrootd-server.cern.ch//file100G.raw</url>
    <url type="file" location="ch" preference="1">root://l@xrootd-server.cern.ch//file100G.raw</url>
    <url type="file" location="ch" preference="1">root://m@xrootd-server.cern.ch//file100G.raw</url>
    <url type="file" location="ch" preference="1">root://n@xrootd-server.cern.ch//file100G.raw</url>
    <url type="file" location="ch" preference="1">root://o@xrootd-server.cern.ch//file100G.raw</url>
    <url type="file" location="ch" preference="1">root://p@xrootd-server.cern.ch//file100G.raw</url>
   </resources>
  </file>
 </files>
</metalink>



Trace: File Download with xrdcp (1GbE)
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Flamegraph: File Download with xrdcp (1GbE)
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epoll_wait
do_idle



Trace: File Download with xrdcp (100GbE)
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Trace: File Download with xrdcp (100GbE)
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Flamegraph: File Download with xrdcp (100GbE)

20

?

do_idle



XRootD Client Current Socket to Poller Mapping
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Solution is to Map Sockets to Different Pollers!
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XRootD Client Performance with New Architecture 
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Mapping sockets from same channel to different pollers improves performance.



Summary and Conclusion
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● Benchmarked various clients on 100GbE network
○ Comparable performance for curl, davix, and xrdcp in single-stream copies

● Identified reason for performance bottleneck in XRootD client with multiple streams
○ Plan to include the fix for this into a future release of XRootD
○ Significant impact for XCache, since it relies on the client to access original data

● Networking with 100GbE NIC behavior is different than with 1GbE NIC
○ Single CPU core not enough to process high request rates (even after tuning)
○ Need to resort to concurrent transfers for now, or multiple streams once the fix is released

● XRootD PgRead/PgWrite is not free, but good compromise in terms of performance
○ Can still easily reach 100Gbps speeds with 8 streams or more
○ For speeds beyond 200Gbps, may need to use network io_uring + pgread/pgwrite

● TLS has bigger performance impact, much higher CPU cost than PgRead/PgWrite





XRootD/XCache in the context of Analysis Facilities
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I/O performance studies of analysis workloads on production and dedicated resources at CERN
A. Sciabà, J. Blomer, P. Canal, D. Duellmann, E. Guiraud, A. Naumann, V.E. Padulano, B. Panzer-Steindel, A.J. Peters, M. Schulz, D. Smith

https://indico.jlab.org/event/459/contributions/11613/
https://indico.jlab.org/event/459/contributions/11613/
https://indico.jlab.org/event/459/contributions/11613/


XRootD/XCache in the context of Analysis Facilities
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XCache == single server == single channel ⇒ XRootD client is CPU bound!



Better XCache Performance by Forcing more Channels
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Running Multiple XCache Daemons is Other “Solution”

29

After reconfiguring XCache server 
with internal clustering, ROOT  
performs much better for 
multi-threaded analysis.

No “fake clients” 
trick needed here.


