Conference on Computing in High Energy and Nuclear Physics 19-25 October 2024 Kraków, Poland

Evolution of the CERN Tape Archive scheduling system

Dr. Jaroslav Guenther (CERN) on behalf of the CERN IT CTA Team

Scheduling Evolution in CERN Tape Systems

manual scheduling

robotic scheduling, namespace \rightarrow CERN IT repack introduced!

centrally deployed scheduling

distributed multi-threaded scheduling using ObjectStore technology

CTA adopted by wider community ! new challenges ahead

~1990 SHIFT

~1998 STK libraries

next ~22 years CASTOR

~2020 CTA

~ 2024 preparation for Run 4

Scheduling DB Stores Transient Metadata

CHEP 2024 | Evolution of CERN Tape Archive Scheduling Systems

Catalogue DB

Oracle

PostgreSQL

permanent metadata tape file namespace

Scheduler DB Implemented as ObjectStore

Architecture

- motivated by performance for archival and retrieval queueing operations
- multi-threaded interface to Ceph
- protobuf serialised objects in key/value store (archive, retrieve requests and queues)
- code design ensures
 - high performance
 - ► scaling
 - ► reliability
 - (despite > storage round trips than DB)
- delivered very well for Run 3

Motivation for Scheduler DB Evolution

Development Cost

- complex distributed transaction management system
- high maintainability cost
 - additional dependency
 - requires extensive learning effort
- scheduler logic is tightly coupled to ObjectStore implementation
 - Iack of indexes is a serious constraint on implementation of scheduler algorithms (e.g. cancelling requests)
 - as we scaled up to ~200 tape drives, global locking caused scheduler contention
- workflows beyond original design proven difficult

but

design allows multiple backends

and

code complexity reduction possible

and

we have off-the-shelf solution = Relational DB

Motivation for Scheduler DB Evolution

Operational Cost

- ObjectStore requires additional technology expertise sites which do not run Ceph FTS scheduling using Postgres complex backend object structure • object introspection, forensics and cleanup is difficult Schema updates difficult to manage
- high priority fixes still required several times a year (e.g. for object deletion, empty shard handling, infinite loops, global locking issues, repack exhausting resources, object size handling, etc.)

CHEP 2024 | Evolution of CERN Tape Archive Scheduling Systems

we can consolidate on common technologies

and

have Relational DB rows for operators

and

simpler operational tools

Advantages of Relational DB as the Solution

New Scheduler DB

- lower code complexity
 - no overhead of transactional management code **MVCC, indexing (+sync) "for free" from DB**
- straightforward schema updates
- extensible to multiple database backends (PostgreSQL DB, Oracle DB)
- no global scheduling lock

CHEP 2024 | Evolution of CERN Tape Archive Scheduling Systems

multi-index queues → more flexibility to improve and extend Scheduling algorithms

Overview of Scheduling Workflow

time	Disk buffer	request
	<image/> <section-header><section-header><section-header><section-header></section-header></section-header></section-header></section-header>	<section-header><section-header></section-header></section-header>
	Scheduler DB	fetching jobs

blue = scheduler DB tasks

CHEP 2024 | Evolution of CERN Tape Archive Scheduling Systems

1/2

Overview of Scheduling Workflow

CHEP 2024 | Evolution of CERN Tape Archive Scheduling Systems

Scheduler DB Implementation Architecture

Design Allows Multiple Scheduler DB Implementations

- use CTA generic RDBMS interface for Postgres DB implementation
- workflow oriented tables (Archive/Retrieve/Repack), views, sequences, etc. (file transfer job = row in a table)

CHEP 2024 | Evolution of CERN Tape Archive Scheduling Systems

Finished Implementation of Archival Workflow

Archival

- **√** queueing
- ✓ job summaries per mount decision
- ✓ job fetching for transfer
- ✓ management of failures and retries
- ✓ transfer status reporting
- ✓ improvements in CTA rdbms layer

Lower Granularity Locking

\checkmark drive deciding to mount a tape

lock per logical library

(prevents empty mounts)

 \checkmark fetching the jobs from the queue

lock per tape pool per workflow

(avoids interwoven row sets per drive)

✓ no global lock on scheduling anymore !

Functional Testing of Archival Workflow

<u>Setup</u>

- Full System deployment in Minikube (CTA+EOS) • 1M files, 128 B each
 - I disk for buffer (EOS MGM & FST)
 - ► 1 disk for tape drive
- External Catalogue: Oracle DB
- External Scheduler: PostgresDB

Kubernetes deployment for performance and scalability tests is in works !

CHEP 2024 | Evolution of CERN Tape Archive Scheduling Systems

Load

• 1 tape pool (30 MB tapes)

Dr. Jaroslav Guenther

Functional Test of Archive Scheduling

CHEP 2024 | Evolution of CERN Tape Archive Scheduling Systems

Minimal File Rate Requirements

Conservative estimates

- file sizes grow
 - \rightarrow keeps minimal rate down

CHEP 2024 | Evolution of CERN Tape Archive Scheduling Systems

	RUN 3	RUN 4
CTA SLA	50 GB / s	125 GB / s
Avg. File Size	2 GB	2 GB
vg. Throughput	25 Hz	63 Hz

Postgres DB Scheduling

several times faster than ~ 100 Hz = peak rate of Run 3

CHEP 2024 | Evolution of CERN Tape Archive Scheduling Systems

Dr. Jaroslav Guenther

Summary

Next Scheduler DB Evolution

- ✓ meets with Run 4 challenges
- ✓ satisfies the needs of larger CTA Community
- ✓ decreases future development and operational costs

Implementation Status

- PostgreSQL as CTA Scheduler DB for Archival Workflow is functional
- ✓ Retrieve and Repack are coming next
- / improved locking granularity

CHEP 2024 | Evolution of CERN Tape Archive Scheduling Systems

Long Term Prospects ✓ tape supply logic part of scheduling ✓ refactoring and cleaner handling of several workflows: (leveraging DB features) request/file deletion multiple retrieves per file priority queues

Thank you !

Thank you for your attention

... special Thanks to few of my CERN colleagues for their help (David S., Elvin S., Joao A., Julien L., Michael D., Steven M., Pablo O. C., Vlado B.)

CHEP 2024 | Evolution of CERN Tape Archive Scheduling Systems

I welcome any questions or comments !

Backup

CHEP 2024 | Evolution of CERN Tape Archive Scheduling Systems

Tape Infrastructure

CERN ape Archive

- Archive of the physics data
- Provisioned capacity: ~1.18 EB
- Libraries:
 - 4 x IBM TS4500
 - 2 x Spectra Logic TFinity
- Drives:
 - 40 x TS1170, 46 x IBM1160
 - 88 x LTO-9, 10 x LTO-8
- Media:
 - 150 PB on 3592JF, 150 PB on 3592JE, 227 PB on 3592JD
 - 551 PB on LTO-9, 17 PB on LTO-8, 59 PB on LTO-7M

(September 2024)

- Backup of the business data
- Licensed capacity: ~15 PB
- Libraries:
 - 1 x IBM TS4500 (partitioned)
 - 1 x Spectra Logic TFinity (partitioned)
- Drives:
 - 10 x LTO-9
 - 10 x LTO-8
- Media:
 - 12 PB on LTO-8
 - 11 PB on LTO-7M

New Scheduler DB: Relational DB

Challenges

 independent solutions for ObjectStore-coupled scheduler logic high performance, reliability and scalability IF DB features exploited smartly ! (e.g. not counting all rows for every query) requires optimisation efforts per use-case relies on diligence of developer with DB queries and DB configuration • LHC Run 4!

CHEP 2024 | Evolution of CERN Tape Archive Scheduling Systems

Scheduler DB Implemented as ObjectStore

Architecture

CHEP 2024 | Evolution of CERN Tape Archive Scheduling Systems

Dr. Jaroslav Guenther

IO Limited Sanity Check

CHEP 2024 | Evolution of CERN Tape Archive Scheduling Systems

