
Nick Smith, Christopher Jones, Matti Kortelainen on behalf of CMS Collaboration
CHEP 2024
23 October 2024

RNTuple: A CMS Perspective 



23/10/2024 N Smith I RNTuple: A CMS Perspective

What is RNTuple?
• New I/O format for ROOT
- Will replace TTree for HL-LHC
• They will still support reading from TTrees, but not writing to them

• Standard format design
- More fully split than TTree
• will split containers within containers which TTree cannot do

• Is in an beta release now
- CMS has been giving feedback to the developers
- ROOT wants a 1.0 release end of this year
• will be ‘final’ storage format with backwards compatibility guarantee

• See plenary talk on Wednesday

2



Date N Smith I RNTuple: A CMS Perspective3

Changing CMSSW to be able to use RNTuple



23/10/2024 N Smith I RNTuple: A CMS Perspective

RNTuple Preferred Characteristics of Stored Classes
• TTree’s goal was to support nearly all C++ data objects
- RNTuple’s preferred support is for a smaller subset of C++

• No use of polymorphism
- e.g. no holding a pointer to a base class

• No recursive class dependencies
- e.g. no class which holds a std::vector of its own type

• No storage of bare pointer
- std::unique_ptr is fine

4



23/10/2024 N Smith I RNTuple: A CMS Perspective

CMS’ Data Model
• The in memory and storage data models are the same
- in memory data products are serialized/deserialized directly into/out of storage
- transient data members might not be stored if they can be regenerated later

• Data products must own all memory to which they refer
- no shared memory
- no pointers to memory owned elsewhere

• Cross data product reference are handled by CMS specific smart pointers
- These are capable of reading back a data product from storage on demand
- The storage representation is an index used by CMSSW

•  No other restrictions made on data products
5



23/10/2024 N Smith I RNTuple: A CMS Perspective

Last Year’s Plan: Conform to RNTuple Preferences
• Remove uses of std containers that were not planned to be supported 
- e.g. std::map

• Survey uses of polymorphism in data products
- Remove cases where not needed
- Use std::variant to handle other cases

• Wanted changes to be done adiabatically
- Want TTree version to also be able to store changed types
- Want ROOT schema evolution to allow reading old class implementations stored in TTree

6



23/10/2024 N Smith I RNTuple: A CMS Perspective

Plan Collides with Reality
• Problems removing unnecessary polymorphism
- Removed an unnecessary base class which used polymorphism
• ROOT schema evolution unable to handle the change

• Using std::variant lead to problematic library design
- Code using the type became explicitly dependent on all possible sub-classes

7

libUser

libBaselibA libB

libUser

libBaselibA libB



23/10/2024 N Smith I RNTuple: A CMS Perspective

ROOT Team to the Rescue
• Discussed problems with the ROOT team

• ROOT team allowed unsplit fields
- These use the algorithms already used by TTree
- Supports all class designs that TTree supports

8



23/10/2024 N Smith I RNTuple: A CMS Perspective

New Plan
• All presently stored classes can be stored in RNTuple
- Made possible by unsplit fields

• Classes to be unsplit can be marked in files used to generate dictionaries
- Changes already done in CMSSW
• 44 C++ classes were marked to be unsplit 

- Also possible to specify for each data product separately in job configuration

• No further changes to CMS data products are necessary to use RNTuple
- Optimizing some classes for better storage could be a worthwhile goal

9



Date N Smith I RNTuple: A CMS Perspective10

Preliminary Performance Measurements



23/10/2024 N Smith I RNTuple: A CMS Perspective

Testing Procedure
• Read data from a standard TTree based TFile
- Contains data for CMS’ second smallest file format: MiniAOD
- 84,000 events in 4.7GB file

• Have prototype components that can read/write RNTuple TFiles
- have various options to control performance

• Testing procedure
- Read the MiniAOD file
- Write either TTree or RNTuple based file containing full content of the input

11



23/10/2024 N Smith I RNTuple: A CMS Perspective

File Size
• TTree Standard
- Most data products are unsplit, except those which are smaller when split

• RNTuple Partially Split
- Looked data product by data product to determine if smaller split or unsplit
- Picked best split level for data products that made the most difference
• 7 out of 120 data products were smaller unsplit

12

Format File Size Relative Size
TTree Standard 4.69GB 100.0%

Fully Split 4.8GB 102.4%
RNTuple Fully Split (standard) 4.6GB 98.1%

Fully Unsplit 5.16GB 110.0%
Partially Split 4.39GB 93.7%



23/10/2024 N Smith I RNTuple: A CMS Perspective

Memory Performance
• Monitor calls to new and delete
- continuously track sums of new and delete and record the max difference of the two

• Run job without output to get baseline memory
• RNTuple output uses the partial split setting

13

Job Max 
Memory

Output 
Overhead

Relative 
Overhead

No output 1.34GB 0GB
TTree standard 2.33GB 0.99GB 1.00
RNTuple 3.03GB 1.69GB 1.70



23/10/2024 N Smith I RNTuple: A CMS Perspective

Memory Performance Improvements
• RNTupleWriter takes options to adjust memory usage
- SetApproxZippedClusterSize 
• used by ROOT to decide when to write cluster to file
• default is 50*106 bytes

• Found changing to 25M bytes to give a good operating point
- same file size

14

Job Max 
Memory

Output 
Overhead

Relative 
Overhead

No output 1.34GB 0GB
TTree standard 2.33GB 0.99GB 1.00
RNTuple 3.03GB 1.69GB 1.70
ZipCluster 25M 2.49GB 1.15GB 1.16



23/10/2024 N Smith I RNTuple: A CMS Perspective

Threading Performance
• Ran the test jobs at different thread counts
- Number of concurrent events always kept at 1
- Use only time spent in the code that interacts with output file (OutputModule)

15

OutputModule Throughput vs Threads

O
ut

pu
tM

od
ul

e 
Th

ro
ug

hp
ut

 
(e

v/
s)

0
20
40
60
80

100
120
140
160
180
200
220
240

Number of Threads
0 2 4 6 8 10 12

RNTuple Standard
RNTuple partial split
RNTuple partial split cluster 25M
TTree Standard



23/10/2024 N Smith I RNTuple: A CMS Perspective

Conclusion
• CMS can store its data in RNTuple
- Thanks to added unsplit option

• Relative performance compared to TTree is still under study
- File size reduction are modest: ~6%
- Concurrency improvements are substantial: ~2-3x faster at 8 threads
- Memory gain is controllable : 16% more memory required
- Need to study effect of RNTuple on CMS’ other file formats

16


