

CHEP`24, Krakow, Poland, 21-25 October

Impact of RNTuple on Storage Resources for ATLAS Production

T. Ovsiannikova (UWashington, US) *tovsiank@uw.edu* Alaettin Serhan Mete (ANL, US) <u>amete@anl.gov</u> Marcin Nowak (BNL, US) <u>mnowak@bnl.gov</u> Peter Van Gemmeren (ANL, US) <u>gemmeren@anl.gov</u> on behalf of the ATLAS Computing Activity

Motivation

- The High-Luminosity era demands optimized I/O, making RNTuple crucial for efficient data handling
- RNTuple provides significant disk space reduction and I/O CPU usage improvements via parallel, asynchronous operations and direct GPU memory transfers
- After years of testing in ATLAS, ATLAS is now able to write all production formats using RNTuple
- The ROOT team presented the detailed studies on the compression and reduction size last year
- However, these studies were limited to open-source ATLAS data (only DAOD format), and production data could not be used
- The ATLAS DAOD data2023 studies were presented on ACAT earlier this year showing around 20% disk space saving
- The goal of this study is to measure the reduction effect using the main reconstruction and derivation production formats for both data and MC **Typical ATLAS Data Processing Chain**

Name (format)

Alaettin Serhan Mete et all ACAT2024 talk CHEP`24, Krakow, Poland, 21-25 October 2/10

Page/Basket sizes

ATLAS I/O with TTree:

• Each branch is stored in baskets, which are compressed separately. After the first flush (around 500 events), baskets are re-optimized to improve compression

ATLAS I/O with RNTuple:

- Fields are stored in columns as pages, usually page sizes smaller than optimized TTree baskets
- Very recently addressed by a new, adaptive algorithm to adjust page sizes
- More details can be found in the Marcin Nowak talk "Adoption of ROOT RNTuple for the next main event data storage technology in

the ATLAS production framework Athena"

Alaettin Serhan Mete et all ACAT2024 talk CHEP`24, Krakow, Poland, 21-25 October 3/10

RNTuple vs TTree size reduction

- RNTuple vs. TTree output size was studied for reconstruction and derivation ATLAS formats
- The ROOT head of master version as of 01 October 2024 was used
- Compression was studied using the zstd compression algorithm (standard for ATLAS) ullet
- **Reconstruction:** 10k events sample Data and MC for the common formats (single sample with data23 pile-up profile for each format) •
- **Derivation:** 100k events samples with various configurations for both Data and MC (different pile-up profiles and conditions) •

CHEP`24, Krakow, Poland, 21-25 October

DAOD per events size reduction

- Reduction seen for most of the domains with few exceptions for some branches ۲
- Should be resolved before HL-LHC:
 - As example: the latest trigger optimization reduces the size of the trigger domain with factor 4 for both RNTuple and TTree

CHEP`24, Krakow, Poland, 21-25 October

DAOD per events size reduction

- Reduction seen for most of the domains with few exceptions for some branches ٠
- Should be resolved before HL-LHC: \bullet
 - As example: the latest trigger optimization reduces the size of the trigger domain with factor 4 for both RNTuple and TTree ۲

mostly understood would be resolved soon

CHEP`24, Krakow, Poland, 21-25 October

AOD per events size reduction

- In each domain there are some branches require more storage for RNTuple \bullet
- Custom page sizes for larger branches could improve performance

CHEP`24, Krakow, Poland, 21-25 October

AOD per events size reduction

- In each domain there are some branches require more storage for RNTuple ۲
- Custom page sizes for larger branches could improve performance \bullet

Most of the listed here branches/fields are vectors of or vectors of links to the complex objects that contains set of various C++ containers and data types

CHEP`24, Krakow, Poland, 21-25 October

A small increase in memory usage was observed especially in derivation jobs

- Benchmarking in multi-processor mode shows an increase of approximately 100 MB per worker ۲
- To be investigated... •
- Since ATLAS has strict GRID memory limits, reducing memory usage is essential

Conclusion

- RNTuple prototype is available for all ATLAS production formats ۲
- RNTuple prototype offers significant improvements in disk space and I/O performance, but memory usage requires optimization ۲
- While most containers shrink, some areas, such as nested vector<int>, show size increases, suggesting the need for further refinements \bullet
- Significant progress has been made on trigger data in the latest developments, but further improvements would be beneficial •

Thank you for your attention!

CHEP`24, Krakow, Poland, 21-25 October

