Advancing ATLAS DCS Data Analysis with a Modern Data Platform

CHEP2024 Luca Canali (CERN), Andrea Formica (Université Paris-Saclay), **Michelle Ann Solis (University of Arizona)** on behalf of the ATLAS Computing Activity

Analysis of DCS Data

- Detector Control System (DCS) data mostly used for online operations
 - We only read small chunks of data for monitoring, or when we find detector problems
 - Data archived into Oracle database using Siemens WinCC OA application
 - Can we get insights by analyzing large chunks of DCS data?
 - Working with detector experts for the analyses: ex ATLAS New Small Wheel (NSW)

Toolset

- Let's not use the Oracle DB for this (avoid overloading of ATLAS online DB, cost Oracle licensed per CPU to scale up, performance)
- Solution: import data into a separate and optimized platform for data analysis ٠

Offloading Data from Oracle for Analytics

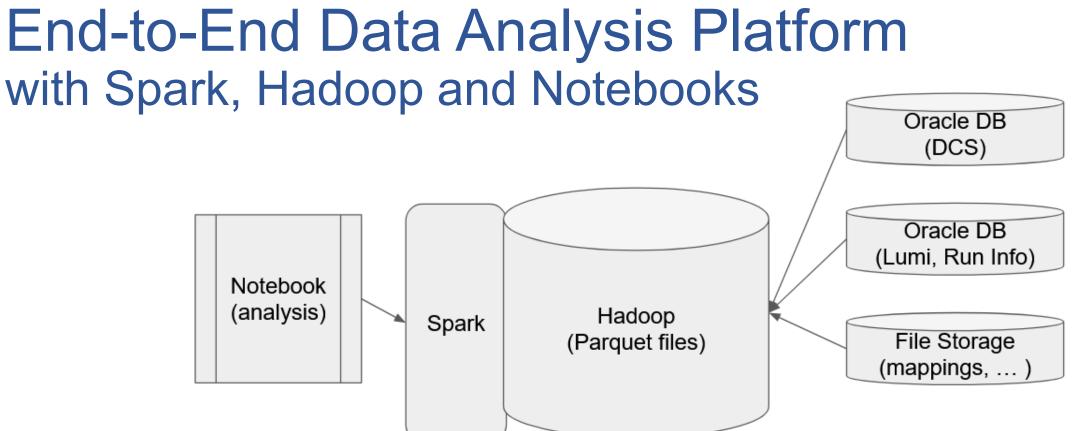
- Moving data from databases to analytics
 - Export from DBs into files (Parquet format)
 - Query data with scalable engines (Apache Spark)
 - Used by ATLAS DCS and ATLAS NSW and other projects

Oracle DB

DCS Data Offloaded to Parquet

- Data is copied from Oracle to Parquet files
 - Files hosted on Hadoop in general-purpose cluster called Analytix at CERN
- DCS Data
 - Time series data where each row contains a timestamp and an element ID associated with specific measured data values
 - Apply daily partitioning to parquet files by timestamp values for efficient querying and data import
 - Data imported incrementally daily due to large size and frequent updates

Technology: why Apache Parquet?


- With Apache Spark plus Parquet files we are building a DB for large scale analysis
 - High adoption in industry and open source for building data lakes and data warehouses
- Parquet
 - Is a columnar data format
 - Optimized for storing and querying data for large-scale analysis
 - Uses encoding and compression
 - Data is stored together with its schema
 - Works well with Apache Spark, Pandas, and many other tools
 - Provides a simple way to map DB tables into files

IT Services: SWAN, Spark, and Hadoop

- Data analysis platform, interactive and at scale
 - Running on many CPUs like batch, but interactive (notebooks)
- Storage and compute (Hadoop, Spark) from CERN IT
 - Shared cluster capacity: 1500 (physical) cores, 20 PB
- How much do we use?
 - DCS data: used so far (Oct 2024) ~ 3 TB
 - Compute used: Sporadic CPU-intensive queries
- SWAN, a CERN service for Python notebooks
 - Integrates LCG releases and Spark
 - Easy to get started, build from examples

Use case: ATLAS NSW

Done from user perspective via simple notebooks where the appropriate libraries are pre-installed

Clusters for execution:

"See" via spark as relational tables, so able to easily make join-like requests on imported files

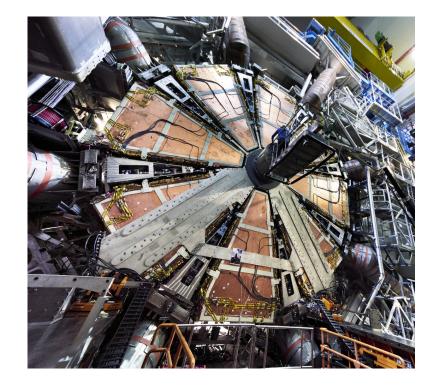
Data is prepared:

This system is used as a dynamic database, importing needed information from external data sources into parquet files

ATLAS New Small Wheel (NSW)

MicroMegas (MMG) + small Thin Gap Chambers (sTGC)

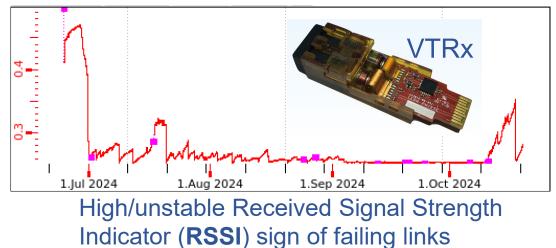
- Muon end-cap spectrometer
- Phase I upgrade


ATLAS NSW Introduction

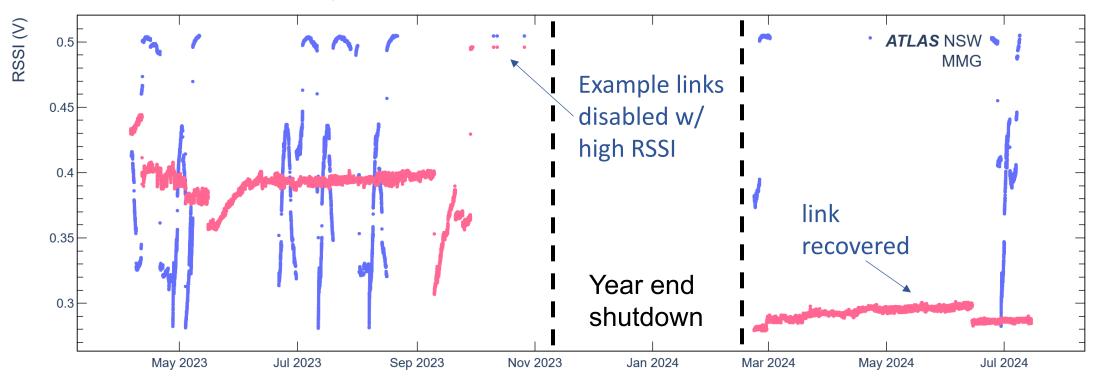
DCS Monitoring

- HV & LV
- Gas
- Electronics
 - Temperatures
 - Voltages/Currents
 - online status and configuration

Lots of data to analyze!

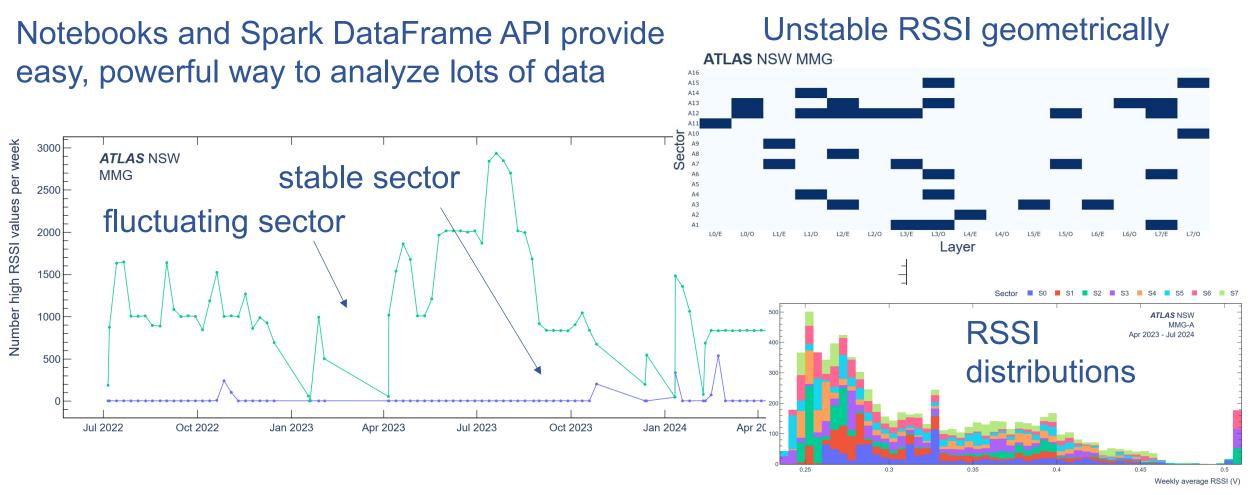

- **23M** rows per day, **6.6 billion** rows in 2024 for MMG so far
- Too large to query Oracle directly

- 64 sectors, 8 layers per sector
- 5k front-end electronics boards
- over 2M readout channels


CERN Versatile Link Project

NSW DCS Monitoring Motivations for querying DCS

- Monitoring of known hardware issues
 - VTRx Versatile Transceiver optical link failures affecting ~5%
 - > 1400 VTRx on NSW
 - How many links affected? Recovered? Stable over time?
 - Determine any possible intervention needed during long shutdown (LS3)
- DAQ link stability investigation
 - ~10% of optical fibers showed issues in DAQ
 - Looked at several parameters monitored in the DCS to find correlations, ruling out hardware issues
- Monitoring of HV status for performance efficiency
 - Disabled, resistive, below nominal channels


NSW VTRx Analysis

Quickly pick out problematic VTRx over time

- Queried parquet files for all MMG RSSI data April 2023 to July 2024 into DataFrame \rightarrow < 30 sec
- Aggregated time in 10 sec intervals for all links \rightarrow 2 min
- Selected on geometry (side, sector, layer, etc) and identified all bad VTRx \rightarrow < 1 min
- Quickly convert Spark DataFrames to Python's Pandas DataFrames to plot

NSW VTRx Analysis

- Over 500 optical links on MMG
- Perform large scale data operations in a few lines of code: extract data fields, filter, compute averages, derivatives, etc.

NSW High Voltage Status

- Over 2000 MMG HV channels
- Join different sources with DCS data in the same platform, for ex: T0 processed runs to select times just during physics runs

Wrap Up

- DCS data from Oracle to a platform for analysis
 - Pipelines are up and running, maintained by ATLAS-DBA using CERN IT infrastructure
- Analysis on CERN Jupyter Notebook service (SWAN) using Python
 - Expressive APIs, executed at scale on clusters
- Example •
 - Monitoring of known hardware issues and high voltage
 - Understand readout and stability issues
 - Showed how NSW profited from this platform to analyze DCS monitoring data to better understand detector issues in an easy and accessible way 14

References

- Gitlab project:
 - <u>https://gitlab.cern.ch/atlas-dba/dcs-offload</u>
- SWAN service:
 - <u>https://swan.web.cern.ch/swan/</u>
- Hadoop service:
 - <u>https://hadoop-user-guide.web.cern.ch/</u>
- Training material on Spark and SWAN
 - <u>https://sparktraining.web.cern.ch/</u>

- Acknowledgements:
 - ATLAS DBA and ADAM (ATLAS Database and Metadata) group, NSW experts, Service support for Oracle, SWAN and Spark, Hadoop

