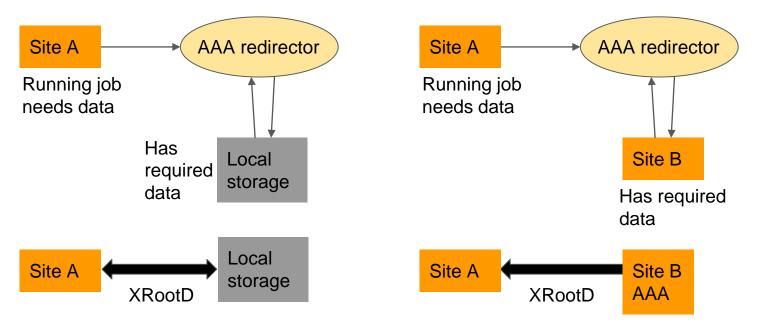


Shoveler testing and validation for CMS

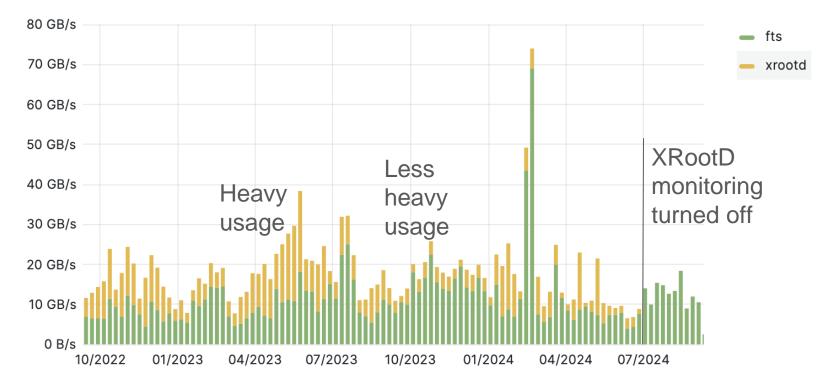

Katy Ellis, CHEP24, 22nd Oct 2024

Science and Technology Facilities Council

Introduction

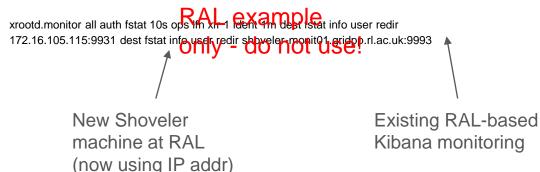
- The XRootD transfer protocol is used extensively by CMS jobs
 - Streaming data from local storage or remote storage via AAA
 - Writing output data to storage

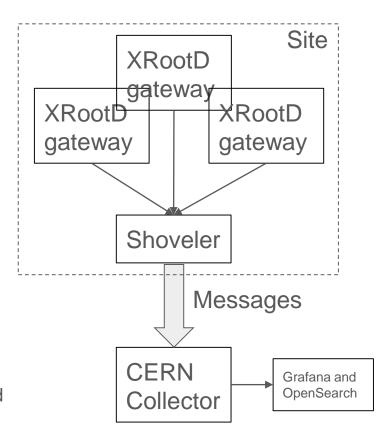
XRootD monitoring for WLCG


- Until recently you could view XRootD transfer rates in the WLCG dashboard, which used the 'GLED' software data sent to 'COLLECTOR'
- GLED monitoring has long been considered incomplete and unreliable
 - Packets lost when transmitted to the collector?
 - https://zenodo.org/records/4688624
- This monitoring was turned off in June due to:
 - Shoveler having been developed (although not fully deployed)
 - Not wanting to upgrade GLED for a new OS
- The new XRootD monitoring is called Shoveler
 - Originated from the WLCG Monitoring Taskforce
 - Developed by Derek Weitzel (UNL) and run by Borja Garrido Bear (CERN)

Importance for CMS

- ATLAS mostly bring entire data files to their jobs
 - CMS data is streamed only parts needed by the job
- CMS make extensive use of remote reads (AAA) as well as local
 - Are jobs failing because either network or slow storage?
 - Is job efficiency low at certain sites due to slow reads?
 - In an era of finite network bandwidth, how much WAN capacity is CMS using?
- To make improvements, we need accurate and informative monitoring
 - Hence the reason for this work
 - Accurate and complete monitoring
 - User-friendly experience
 - This talk gives current status of work in progress


Old XRootD monitoring - CMS


Transfer Throughput

How Shoveler works

- 1. Install Shoveler software on real or virtual machine in your data centre <u>GitHub opensciencegrid/xrootd-monitoring-shoveler</u>
- 2. (Shoveler needs permissions to send data to the CERN collector)
- 3. Add config to xrootd access points

N.B. If the connection between Site and CERN is lost, data is stored on the Shoveler machine in /tmp/

The dCache approach

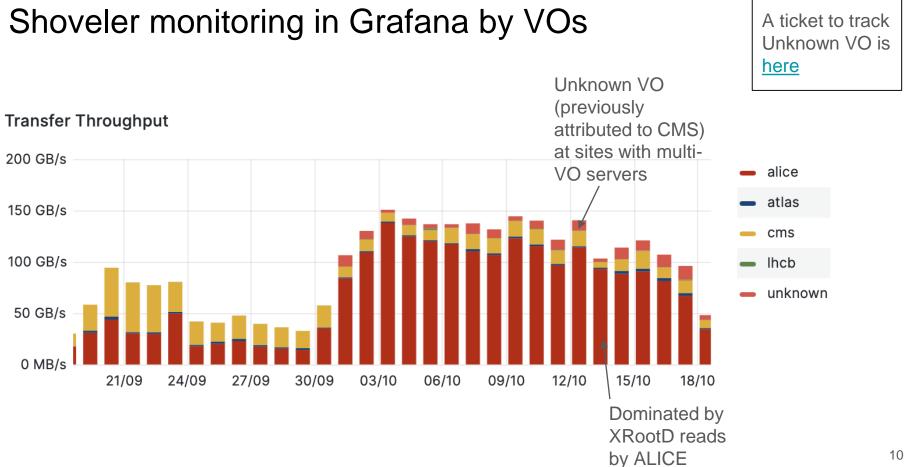
- dCache endpoints have a non-native XRootD implementation which not directly compatible with Shoveler
 - Some of CMS' largest sites run dCache, e.g. FNAL
 - A lot of traffic would be missed
- A script was written to match the Shoveler monitoring
 - Evidence that some sites are using this
- My current focus is on validating Shoveler, but clearly both are important for CMS

What is being monitored so far?

- CERN
- RAL and some other UK sites
 - >2 years testing RAL AAA gateways
 - Issues addressed:
 - Shoveler process dying silently (although appears still to be running)
 - Ability to identify transfer by VO
 - Lack of rate monitoring
- DESY and KIT (partial, using dCache script)
- Many US sites
- Not all sites rollout campaign is on hold

How can I see the monitoring?

Remember, this is still incomplete, and not yet


Q Sei

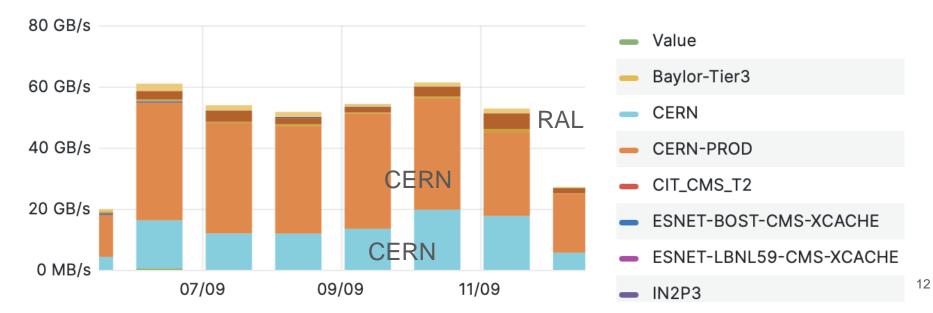
In the WLCG > XRootD transfers dashboard https://monit-grafana.cem.walidatedl/xrootd-transfers?orgld=20

🌀 🖫 WLCG 🗸

🗮 Home > Dashboards > Transfers > XRootD Transfers 🕁 😪

Inconsistent throughput/volume

Transfer Throughput


Supposing the throughput is true...and that we are using a 1-day binsize...calculate the volume for the first bin

Volume = 140GB/s * 24 * 3600 = 12PB (not 40PB)

Grafana monit grouped by src_site

Next Generation

Transfer Throughput

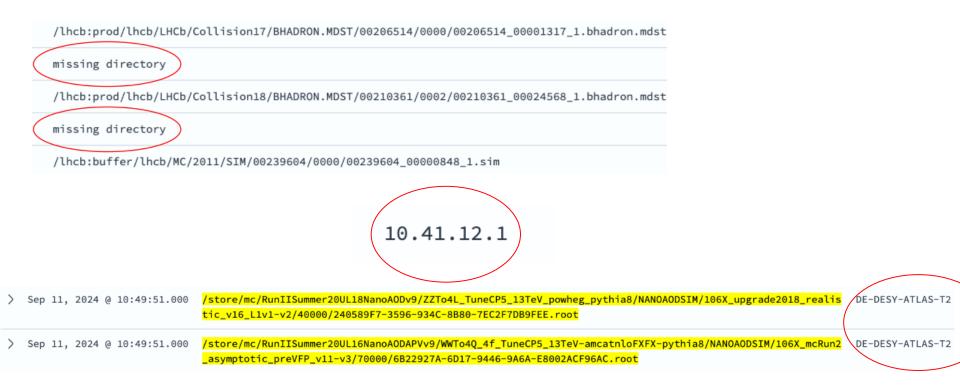
Grafana plot 'disappears'? (Group by src_hostname)

~ Next Generation

Transfer Throughput

4 GB/s Value Next Generation 0.1.2.1.2.0.a.2.dynamic.cust. 3 GB/s 10.0.150.25 Transfer Throughput 2 GB/s 10.1.11.107 4 GB/s 192-168-121-155.dask-nick-2esmith-40cern-2ech.cmsaf-prod.svc.cluster.local 10.1.11.108 192-168-202-11.dask-colac-2d27-40rhodes-2eedu.cmsaf-prod.svc.cluster.local 1 GB/s 3 GB/s 10.1.11.112 192-168-202-29.dask-colac-2d27-40rhodes-2eedu.cmsaf-prod.svc.cluster.local 10.1.11.115 0 MB/s 192-168-202-33.dask-colac-2d27-40rhodes-2eedu.cmsaf-prod.svc.cluster.local 2 GB/s 10.1.11.116 192-168-202-4.dask-elmaka8700-40gmail-2ecom.cmsaf-prod.svc.cluster.local 1 GB/s 192-168-202-9.dask-colac-2d27-40rhodes-2eedu.cmsaf-prod.svc.cluster.local 192-168-235-37.dask-colac-2d27-40rhodes-2eedu.cmsaf-prod.svc.cluster.local 0 MB/s 192.12.238.202

Shoveler monitoring in OpenSearch



metadata.timestamp per 5 minutes

	Time	data.src_hostname	data.server_site	data.dst_hostname	data.dst_site	data.remote_access
>	Oct 18, 2024 @ 19:41:03.000	g36n13.hep.wisc.edu	T2_US_Wisconsin	g32n16 ?	UNKNOWN	true
>	Oct 18, 2024 @ 19:40:52.000	p06636710b90882.cern.ch	CERN-PROD	.2	UNKNOWN	true
>	Oct 18, 2024 @ 19:40:52.000	p06636710b90882.cern.ch	CERN-PROD	missing ?	UNKNOWN	true
>	Oct 18, 2024 @ 19:40:52.000	p06636710b90882.cern.ch	CERN-PROD	Miss	UNKNOWN	true
>	Oct 18, 2024 @ 19:40:52.000	p06636710y31446.cern.ch	CERN-PROD	p06636710u99343.cern.ch	CERN-PROD	false
>	Oct 18, 2024 @ 19:40:52.000	?	CERN-PROD	p06636710b90882.cern.ch	CERN-PROD	true

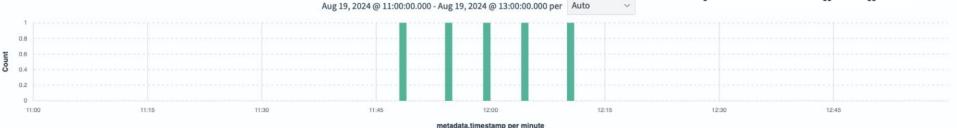
- How can it not know the source/destination hostname?
- Sites not up to date in CRIC?

Shoveler monitoring in OpenSearch

Failure failure

- XRootD (and hence Shoveler) has no obvious way to monitor streaming transfer failures
- We can count number of accesses, the volume of data, length of connection and calculate transfer rates...but we cannot monitor failures as we do for FTS transfers
- CMS is *strongly* in favour of this
- Issue is now being considered <u>here</u>

Testing: back-to-basics

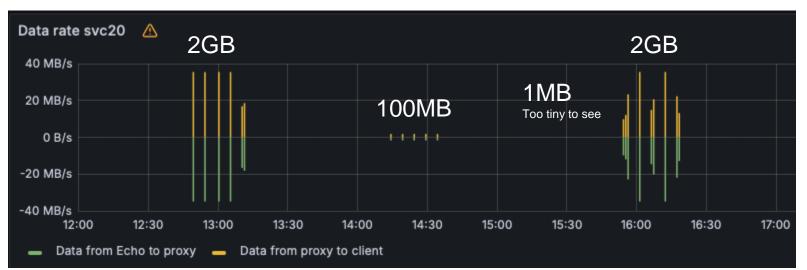

Isolated file transfer tests

- Transferred various sized files 5 times each from RAL disk through a AAA proxy gateway and looked for the evidence in each of three monitoring systems:
 - RAL Vande (from host network); RAL kibana; Shoveler (see next slides)
- 2GB file:

Shoveler monitoring (OpenSearch)

- Shoveler picks up the 5 transfers in OpenSearch
- Times match up with the transfer-end time

Mon 19 Aug 12:48:10 BST 2024 [1.863GB/1.863GB][100%][==== Mon 19 Aug 12:53:37 BST 2024 [1.863GB/1.863GB][100%][==== Mon 19 Aug 12:59:01 BST 2024 [1.863GB/1.863GB][100%][==== Mon 19 Aug 13:04:25 BST 2024 [1.863GB/1.863GB][100%][==== Mon 19 Aug 13:09:49 BST 2024 [1.863GB/1.863GB][100%][====



5 hits

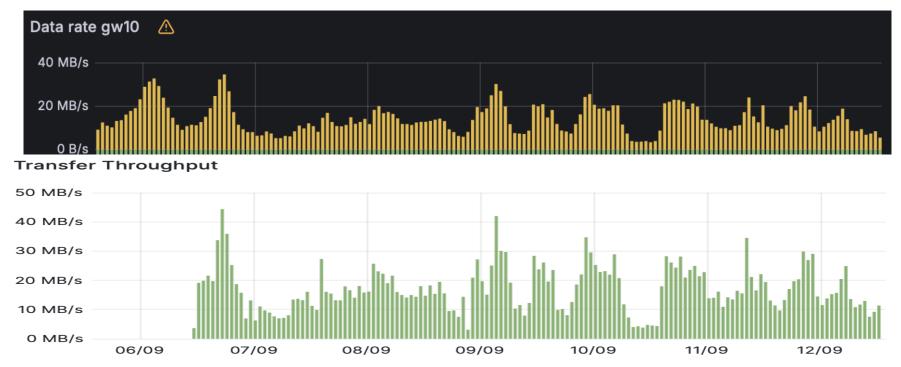
	(CMT)									
Time	(GMT)	data.dst_hostname	data.src_hostname	data.file_lfn	data.file_size	data.ipv6	data.is_transfer	data.operation_time	data.read_operations	
Aug 19, 2024 @ 12	2:10:12.000	lcgui06.gridpp.rl.ac.u k	ceph-svc20.gridpp.rl.ac. uk	/store/temp/Shoveler Test_2GB	2,000,000,000	true	true	23	239	
Aug 19, 2024 @ 12	2:04:49.000	lcgui06.gridpp.rl.ac.u k	ceph-svc20.gridpp.rl.ac. uk	/store/temp/Shoveler Test_2GB	2,000,000,000	true	true	24	239	
Aug 19, 2024 @ 11	1:59:25.000	lcgui06.gridpp.rl.ac.u <mark>k</mark>	ceph-svc20.gridpp.rl.ac. uk	/store/temp/Shoveler Test_2GB	2,000,000,000	true	true	24	239	
Aug 19, 2024 @ 11	1:54:01.000	lcgui06.gridpp.rl.ac.u k	ceph-svc20.gridpp.rl.ac. uk	/store/temp/Shoveler Test_2GB	2,000,000,000	true	true	24	239	
Aug 19, 2024 @ 11	L:48:37.000	lcgui06.gridpp.rl.ac.u k	ceph-svc20.gridpp.rl.ac. uk	/store/temp/Shoveler Test_2GB	2,000,000,000	true	true	26	239	

RAL Vande transfers

- Internal monitoring from the RAL Vande (graph-generator) monitoring
- Data comes from the host network monitoring via telegraf
- Binning is 1 minute
- Rates are commensurate with transfer time (<30 seconds)

(6) transfers in RAL Kibana compared with Shoveler

- Kibana has same data stream as Shoveler (xrootd.monitor)
- Queries the 'fstream.close' message-type, as Shoveler uses


Time 🚽	xrd_XFR_read	xrd_derived_read_rat	te	Xrdcp output	xr	d_derived_duration		
August 19th 2024, 16:17:12.000	1.863GB	70.643MB		27.4	27	.00		
August 19th 2024, 16:11:44.000	1.863GB	68.565MB		28.3	27	.82	RAL Kibana	
August 19th 2024, 16:06:16.000	1.863GB	70.643MB		27.4	27	.00		
August 19th 2024, 16:00:49.000	1.863GB	61.527MB		30.4	31	.00		
August 19th 2024, 15:55:18.000	^{1.863GB} / Partial	68.12MB		28.1	28	.00	I killed this one	د
August 19th 2024, 15:53:15.000	536MB transfer	67MB			8.0	00	on purpose	,
Time	data.ipv6	data.is_transfer	data.op	peration_time	data.re	ad_operations	data.read_bytes_at_close	
> Aug 19, 2024 @ 15:17	7:12.000 true	true	27		239		2,000,000,000	
> Aug 19, 2024 @ 15:11	l:44.000 true	true	28		239		2,000,000,000	
> Aug 19, 2024 @ 15:06	5:16.000 true	true	27		239	Shoveler	2,000,000,000	
> Aug 19, 2024 @ 15:00	0:49.000 true	true	31		239	OpenSea	rch 2,000,000,000	
> Aug 19, 2024 @ 14:55	5:18.000 true	true	28		239		2,000,000,000	20
> Aug 19, 2024 @ 14:53	3:15.000 true	false	8		67		562,036,736	-

Vector reads?

- CMS jobs typically do not download a whole file but stream the parts needed...often using "vector reads"
- I simulated this to see how Shoveler handles the different operation chunks=[] for i in range(1, 101): chunks.append((1000000*i, 10)) status, res = fd.vector_read(chunks)

data.file_lfn	data.is_transfer	data.file_size	data.operation_time	data.read_operations	data.read_vector_bytes	data.read_vector_count_max
/store/temp/Shovel erTest_2GB	false	(XRootD doesn't do sub-second operation timing	1		100 100 00 vector ads made 21

Shoveler rates compared with network rates

AAA access gateway proxy for remote sites reading from RAL disk

Summary

- Testing is progressing
 - Some significant 'visualisation' improvements still to address
 - More monitoring comparisons to be done
 - Including dCache sites
- Basic transfer tests look good higher stress would be better
 - More difficult to ensure every message is logged in a busy system
- CMS strongly in favour of failure monitoring to be developed
- I am not yet advocating a roll-out over many sites
 - I don't see the lack of failure monitoring as a blocker to this
 - But some sites have joined the testing thanks!