
Enhancing XRootD
Load Balancing for 
High-Throughput transfers

Jyothish Thomas, James Walder, Thomas Byrne, 
Guilherme Amadio

jyothish.thomas@stfc.ac.uk, 
james.walder@stfc.ac.uk, tom.byrne@stfc.ac.uk

mailto:jyothish.thomas@stfc.ac.uk
mailto:james.walder@stfc.ac.uk
mailto:thomas.byrne@stfc.ac.uk


The RAL Tier-1 Setup



The RAL Tier 1 disk storage setup

▪RAL has a large Ceph object store disk pool (Echo)

▪Echo is accessed through a set of XRootD server gateways

▪Clients contact a single DNS endpoint, behind which is a pair of 
XRootD redirectors that balance the load between the servers

▪Servers are equivalent in functionality, i.e, all servers access the 
same storage backend, hence the load balancing only needs to 
consider the load on the server

▪Servers have a constant stream of traffic, averaging 5GB/s 
between Aug-Sep 2024, with some periods of higher traffic.

3



The RAL tier 1 setup

4

Ceph Cluster (ECHO)

XRootD
Gateway

XRootD
Gateway

XRootD
Gateway

XRootD
Gateway

XRootD
Gateway

XRootD
Gateway…

Load Balancing

Client Client Client Client Client Client Client Client
…

DNS Endpoint



DNS Round Robin limitations

Occurrences of gateway hotspotting tracked down to 
DNS server configuration at another site 

▪ Relying on clients (and DNS 
servers) to choose randomly 
(and often) for an even 
distribution

▪ Not actually loadbalancing
o Slower gateways will end up with 

more active transfers
o No backoff mechanism to allow 

overloaded gateway to recover

▪ (RAL specific) No direct control 
over our DNS, requests via 
central IT helpdesk made 
hardware interventions very time 
consuming



XRootD Cluster Management



XRootD Cluster Management 

▪ XRootD has a native Cluster Management Service Daemon (CMSD)

▪ This adds an XRootD manager 
that manages a cluster of XRootD
servers

▪ The manager has a load balancing
component that can distribute load
according to a user defined 
weighted sum of server 
reported metrics (io,sysload,
memory load,etc..)

7

XRootD Cluster Management Service Configuration Reference (5.7)



XRootD CMSD experiences

▪Although a major improvement 
compared to DNS RR, we 
observed some odd 
behaviours at high load
oLoad and connection oscillation

oUnexpected placement decisions

▪ Investigations lead to tuning 
which helped, but only to a 
point.



Observations under high load

▪ The CMSD load balancing algorithm 
assigns the incoming transfers to the 
least loaded server and any servers 
with a load within the configured 
fuzz value

▪ This works well under normal 
conditions but when all servers are 
at close to full capacity, it results in 
server instability as the load keeps 
moving between subsets of servers

XRootD load balancing to RR (bytes received)

Round Robin was performing better when all 
servers were at near maximum capacity



Studying the CMSD load balancing 

algorithm
▪ Investigation into the CMSD 

SelByLoad algorithm revealed 
selection had a very wide standard 
deviation on assignment distributions 
when the server order is randomized 
(seen right).

▪ The algorithms efficient single-pass 
nature made it hard to select servers 
in a way that wasn't biased by order 
(as shown on the next slide)

Distribution of 100 requests over 10 

servers with load scores 0,10,…,90. The 

test was repeated 10,000 times with the 

internal server order shuffled each time.

Server with lowest load 
received between 100% 
and ~10% of reads

Server with highest eligible 
load could receive as many 
reads as lowest loaded 
server!



Problematic patterns

11

XRootD CMSD SelByLoad Analysis, Thomas Byrne 2024



New load balancing algorithm



Aims
Aim Explanation

Use all available server capacity Load reporting is asynchronous to the load balancing, so the reported 
loads have some latency. Prevent load hopping

The decision algorithm should be fast RAL sees an average request frequency of 50Hz , with peaks of 220Hz 
and the load balancing decision should not impact the other 
components of the CMSD

Load distribution should be sensible, 
not perfect

As the assignment decision is timebound, the main concern is to 
distribute load evenly within a timeframe, not necessarily optimizing 
every individual transfer

The algorithm should be resilient Overloaded servers should be able to join back with no manual 
intervention

The algorithm should be ordering 
agnostic

The order the servers login should not affect the load balancing 
decision

13



Weighted Random Selection algorithm

▪ Given n nodes,

▪ Each node is assigned an inverse load:
▪ iload = Fuzz + (100 – weighted_sum(loads))

▪ For each node i, the inverse load is added to the total sum.
The current sum after each node is kept track of in a separate tracking 
array 
▪ Weights[i] = σ𝑘=0

𝑖 𝑖𝑙𝑜𝑎𝑑(𝑘)

▪ A random number is generated between 0 and the final total sum
▪ SelN = random(0,Weights[n])

▪ Starting from the first index, the first node that had a tracked sum value 
greater than the random number is assigned the transfer 
▪ for i = 0..n ; if Weights[i]>SelN : return i

14



How the new algorithm works

The basic principle of this algorithm is a random weighted selection. An easy 
way to picture it is as follows:

▪ For a set of 4 servers with loads of:
▪ 50%

▪ 70%

▪ 80%

▪ 90%

15



How the new algorithm works

▪ If a node is unreachable or cannot be used by the cluster manager, it 
has an effective slice size of 0, meaning it will never be selected.

▪ A fuzz value allows an even distribution if all nodes are overloaded 
and provides a baseline for each slice size, allowing some tuning 
adjustments for a more even distribution.
For example, a fuzz of 20 on the same values above will result in this 
wheel: 

16



How the new algorithm works

17



Results

▪ The new algorithm has a smaller 
deviation from the mean selection
when the order of loads is shuffled
(right plot)

▪ The aims set out by the algorithm 
were accomplished

18



Problematic patterns – new algorithm

19

XRootD CMSD SelByLoad Analysis, Thomas Byrne 2024



Results
Aim Explanation

Use all available server capacity All available servers will have a chance to be selected

The decision algorithm should be fast The algorithm performed well even under very high loads and full 
network saturation of all our servers. It has O(n) time and space 
complexity 

Load distribution should be sensible, 
not perfect

The load distribution was kept even throughout the available servers. 
Simulations of 10 million decisions resulted in 10 maximum 
consecutive selection of the same server.

The algorithm should be resilient As servers get more transfers and get more loaded, the chance of 
getting selected decreases. As the transfers free up and the load 
decrease, the reverse happens

The algorithm should be ordering 
agnostic

The geometry of this algorithm makes it order agnostic by nature

20



In Production



In Production
Net 

tuning
Further 

Net tuning
New 

Algorithm



Additional Benefits(RAL): deletion efficiency



Thank You


