
DUNE Rucio development and monitoring

Wenlong Yuan 

On behalf of DUNE Collaboration

CHEP 2024

23rd October 2024



DUNE

Illinois S. Dakota

2

• The Deep Underground Neutrino Experiment (DUNE) is a long-baseline experiment which aims 
to study neutrino oscillations and Astroparticle physics amongst other things

• DUNE will consist of the near and the far detectors placed on the path of the most intense 
accelerator neutrino beam in the world

• DUNE is scheduled to start running in 2029, expected to record 30 PB/year of raw data



Rucio

• The next-generation Data Replica service originally 
designed by the ATLAS collaboration

• DUNE has adopted and deployed Rucio, to handle 
large-scale data, like other experiments

• Rucio is an essential component of DUNE Distributed 
Data Management system, along with MetaCat 
(Metadata Catalog), to replace legacy SAM system

3

15th Oct

(DID refers to an individual raw file; not all of DUNE’s raw files have been declared in Rucio yet)



Outline

• Rucio/DUNE Rucio development – James Perry
• Objectstore Support

• Lightweight Rucio Client

• Policy Packages

• DUNE-specific continuous integration tests

• Custom replica sorter algorithm

• DUNE Rucio monitoring – Brandon White, Wenlong Yuan
• Rucio internal monitoring

• Transfer monitoring

• Rucio database dumping

4



Rucio Development - Objectstore Support

• Full support for S3, Swift and Google Cloud Storage now in Rucio core code, 
legacy code removed

• Clients no longer need to have objectstore credentials

• Used for all upload, download and deletion operations on objectstores

• Third party transfers can either use objectstore protocol directly in FTS, or use 
Dynafed as a frontend

• Scalability testing successfully performed

• Minimal objectstore (based on min.io) added to Rucio development Docker image 
for easy development and testing

5



Rucio Development - Lightweight Rucio Client

• Make Rucio client package easier to install

• Could use containers, but inefficient to spin up container to run (e.g.) single Rucio 
upload command at the end of a workflow, 

• Removed several dependencies and made others optional

• Fewer conflicts with other packages

• Many config values can now be specified in environment

• Don’t always need config file

• This work is beneficial to all communities

• Possible further work: allow client to choose suitable data access library instead 
of server dictating this

6



Rucio Development - Policy Packages

• Allows experiments to “plug in” custom code to Rucio using a standard 
interface

• Permissions, schema, logical to physical filename conversion, etc.

• Includes support for multi-VO installations with separate policy package per VO 
(Virtual Organization)

• Created a policy package for DUNE
• Includes physical filename generation - queries MetaCat (DUNE’s metadata 

catalogue) to find path components

• Blocks upload of files not registered in MetaCat via custom permission check

• Other experiments are moving to use their specific policy package 

7



Rucio Development - DUNE-specific continuous integration tests

• These would run via GitHub Actions for each git commit, allowing us to more 

easily catch any Rucio regressions affecting DUNE

• Some experiments already have these (ATLAS, Belle II)

• DUNE’s environment is more challenging:

• Need local MetaCat instance

• Need multiple Docker containers

• Need DUNE policy package deployed

• Test suite has been written, waiting for changes to Rucio test framework to allow 

this to be done in a more generic way

8



Rucio Development - Custom replica sorter algorithm

• Rucio allowed replicas to be sorted by preference according to (for example) 

geographical location

• However DUNE has unique network topology

• DUNE distributed computing model let jobs to run on both storage sites and storageless sites

• Requires custom sorting method

• Added new custom sorting algorithm

• Fetches network information from simple CSV file

• While implementing this, found some bugs in the existing replica sorter code

• Currently fixing these and adding unit tests

9



Rucio Monitoring - Internal Monitoring
• Using Graphite/Grafana monitoring toolset to monitor the internals of Rucio servers and 

daemons, e.g., submission rate of the conveyor daemon (manage file transfers), state of 

conveyor queues, reaper (deletion daemon) rate, server response times, etc.

• DUNE has deployed this new internal monitoring based on Fermilab (FNAL) monitoring 

Platform

RUCIO

PostgreSQL

MQ via Hermes Elasticsearch

Grafana

Kibana

Graphite

Logstash OpenSearch Dashboards

Edinburgh Monitoring Platform

daily
ingest

FNAL Monitoring Platform

10



Rucio Monitoring - Internal Monitoring

11

Rucio FTS requests Rucio Hermes daemon events



Rucio Monitoring - Transfer/deletion monitoring
• When a Rucio transfer/deletion been submitted, the status messages (submitted, queued, 

waiting, done, failed) are sent to a Message Queue (MQ) via Hermes daemon

• DUNE reads these status messages from MQ, aggregates them and then writes the 

aggregated data into OpenSearch at Edinburgh and ElasticSearch at FNAL, where they 

can be visualized using OpenSearch Dashboards, Kibana, or Grafana.

RUCIO

PostgreSQL

MQ via Hermes Elasticsearch

Grafana

Kibana

Graphite

Logstash OpenSearch Dashboards

Edinburgh Monitoring Platform

daily
ingest

FNAL Monitoring Platform

12



Rucio Monitoring - Transfer/deletion monitoring

13

Rucio transfers per source RSE
Rucio transfers status



Rucio Monitoring - database dumping
• DUNE daily dumped Rucio internal database directly to OpenSearch at Edinburgh

• Information like data location, accounting, RSE summary and history could be visualised 

using OpenSearch Dashboards/Grafana

• Storage summary is very helpful for various purpose, e.g. computing resource request, 

computing/physics coordinate, funding purpose

RUCIO

PostgreSQL

MQ via Hermes Elasticsearch

Grafana

Kibana

Graphite

Logstash OpenSearch Dashboards

Edinburgh Monitoring Platform

daily
ingest

FNAL Monitoring Platform

14



Rucio Monitoring - database dumping

15

RSE Usage in the past year Rucio scope pie



Summary

• DUNE has adopted and deployed Rucio, as an essential component of its 
Distributed Data Management system to handle large-scale data

• DUNE Rucio development has involved developing various features to the 
Rucio code base to meet DUNE’s specific needs

• Implementation of general functionalities that are crucial for DUNE and 
potentially beneficial for other experiments/communities

• DUNE Rucio monitoring has deployed various visualization components at 
Fermilab and Edinburgh, essential for DUNE data transfer and 
management development.

16


	Slide 1: DUNE Rucio development and monitoring
	Slide 2: DUNE
	Slide 3: Rucio
	Slide 4: Outline
	Slide 5: Rucio Development - Objectstore Support
	Slide 6: Rucio Development - Lightweight Rucio Client
	Slide 7: Rucio Development - Policy Packages
	Slide 8: Rucio Development - DUNE-specific continuous integration tests
	Slide 9: Rucio Development - Custom replica sorter algorithm
	Slide 10: Rucio Monitoring - Internal Monitoring
	Slide 11: Rucio Monitoring - Internal Monitoring
	Slide 12: Rucio Monitoring - Transfer/deletion monitoring
	Slide 13: Rucio Monitoring - Transfer/deletion monitoring
	Slide 14: Rucio Monitoring - database dumping
	Slide 15: Rucio Monitoring - database dumping
	Slide 16: Summary

