

Science and Technology **Facilities Council**

XRootD: Achieving 100Gb/s Data Transfers

Tom Byrne, Jyothish Thomas, <u>James Walder</u> SCD, RAL-STFC CHEP 2024, Kraków, Poland 19-25 October 2024

Science and Technology Facilities Council

XRootD: And failing) at Data Transfers

Tom Byrne, Jyothish Thomas, <u>James Walder</u> SCD, RAL-STFC CHEP 2024, Kraków, Poland 19–25 October 2024

Motivation

- LHC Experiments and WLCG Sites preparing for HL-LHC conditions
 - Data Challenges (e.g. DC24) essential for testing capabilities and scales
- New communities of large-scale experiments, e.g. SKA
 - Nominal data rates of 100Gb/s from each (of two) SKA Telescopes at in full operations.
 - Up to 1EB of data annually
 - (See SKAO Top-Level Roadmap)
- Need to have:
 - Increasing file sizes (10–50 GB) ?
 - With moving each file faster
 - Increasing throughput
 - Moving all data faster
- Deal with contention of the network for different VOs ? (Not discussed here ...)
- While the future may be Object Storage, support still required for POSIX-like access ...

HL-LHC expected CERN – T1 data rates

T1 Rates	HL-LHC Minimal	HL-LHC fl
T1 (Total)	4.8 Tb/s	9.6 Tb
e.g RAL	610 Gb/s	1.22 Tł
		- TOU

Milestone	Year	Primary Activity	Estimated Data Rate (Low)	e Estimated D (Mid
AA4	>2030	Full SKA design	216 PB/year, 55 Gbps	400 PB/yea 100 Gbps

Shari Breen @ SKAO

Current (WLCG) Production Deployment @ RAL

- UK WLCG Tier-1 Facility: (Rutherford Appleton Laboratory)
 - Serves all main WLCG Experiments and other smaller VOs
- XRootD External Servers (+ dedicated CMS AAA and ALICE servers)
 - Worker Nodes also running XRootd Gateways (+ XCache).
- XrdCeph plugin to Ceph (Rados level Object Store)
 - > 70 PB (usable) storage
- ~ 15 (excluding AAA and ALICE) External Gateways
 - 25Gb/s NICs

See talk: <u>J.Thomas</u> (next) for more details

Current (WLCG) Production Deployment @ RAL (2)

- Gateway DTN (Data Transfer Nodes) act as interface between External clients and Ceph OSDs.
 - i.e. Every byte in => bytes out (and vice versa)
 - Also, Checksum is performed on the server after transfer to OSDs
 - Additional bytes read back in to gateways on Write.
- Assuming similar Reads and Writes; 25Gb/s NICs; $= > \sim 1$ GB/s file transfer in and out.
 - require ~ 75 hosts for HL-LHC (naively) (with saturated NICs)
- So O(15–20) hosts for HL-LHC, if can saturate 100Gb/s ...??
- Use On-the-fly checksumming to avoid additional read
 - (Or, OSD-level checksums)
- Significant effort in the future of Networks,
 - Unlikely to be the primary constraint.
- Can software (e.g. XRootD) support such throughput, and, can the storage keep up ...

Current Setup: RAL (3)

WNs from CMS-AAA). Writes into RAL [Disk] (FTS)

Reads from RAL [Disk] (FTS)

• RAL currently able to saturate the ~available 100Gb/s of OPN connectivity, when required (includes also traffic to

LHCOPN RAL

Achieving 100Gb/s Connectivity

- To achieve 100Gb/s connectivity, requires:
 - Well tuned hosts (e.g. apply Esnet tuning (<u>100G tuning</u>))
 - Uncongested Network / negligible packet loss
 - **□** Jumbo frames (not in the tests here, but for long-haul transfers) considered vital)
 - **D** Maximum throughput via optimisation of:
 - Data rate per flow
 - Max number of flows that can be handled efficiently
 - Prioritisation of flows (e.g. SENSE).

Backend storage capabilities

Test Setup and Configuration

- Physical hosts with similar spec to existing hardware, with addition of:
- Mellanox ConnectX-6 100Gb/s dual-port NIC
 - Bonded NIC, with dedicated VLANs for internal and external traffic in DMZ
 - MTU 9000 (remote storage tests ran at typically 1500)
- Ceph cluster:
 - Development cluster (for testing outside of prod workloads)
 - (Experimental cluster delayed commissioning)
 - 4 nodes
 - mixture of 4 and 8TB HDDs
 - mixture of 12 and 16 drives per host
 - 5% flash per OSD
 - 25Gb/s networking
 - CephFS kernel mounted

XRootD server

PowerEdge R650xs

2x Intel Xeon Gold 6326 2.9G. (32Cores / 64 Threads)

128 GB RAM Centos 7

Deneb dev cluster theoretical limitations

- 54 HDDs: ~10,000 IOPS
 - With $8+3 EC => \sim 1000$ client write ops per second.
- 4 nodes; 25Gb/s => 100 Gbps
 - Network overhead for EC shard redistribution is 1*(10/11), so theoretical throughput is ~50% of available bandwidth
 - So ~50Gbps or 6.25GBps

- Basic iperf3 testing for baseline network connectivity.
 - Iperf3 (3.15beta) used, with multithreaded streams
- 'Nearby' (2.6ms) JANET iperf3 server for remote tests
- By 16 parallel flows have saturated to ~ 100 Gb/s on egress and ingress rates

```
net.core.rmem_max = 2GiB
net.core.wmem_max = 2GiB
net.ipv4.tcp_rmem = 4096 128k
                                 1GiB
net.ipv4.tcp_wmem = 4096 128k
                                 1GiB
net.core.default_qdisc = fq
```

TCP Testing

Str	eams	Egress [Gb/s]	Ingress [Gb/
	1	9.3	10.6
	2	18.5	18.7
	4	36.9	36.9
	8	61.8	80.4
	12	76.4	96.8
	16	97.1	97.1
	24	97.8	97.7
	32	98.3	98.3

XrdBlackhole

- Motivation:
 - Tools such as iperf3 perform tests of network / host-level tuning
 - Needed mechanism decouple storage backend from XRootD layer
 - Possible options: nullfs, writing to /dev/null
 - In addition, needed a way to generate a set of test data for reading
- <u>XrdBlackhole</u> :
 - Simple XrdOss plugin to XRootD
 - Data written in is dropped in the OFS layer
 - Performs simple metrics calculations
 - Minimal FS mocking
 - Ability to read data from 'crafted' path name (e.g. file_100GB_001)
- Still a WiP.

XrdBlackhole: Local Tests

- Run tests from the XRootD host:
 - 10GiB File in tmpfs memory ~ 8Gb/s for a single file
 - Writing files in parallel, saturating around ~ 32 Gb/s of write speed.

Parallel Files	1	2	4	8
Total throughput [Gb/s]	8	13	24	30

• For **Reading** (to /dev/null) via curl client (macaroon authZ)

Parallel Files	1	2	4	8	16
Total throughput [Gb/s]	14.5	27	39	91	150

Writing from Remote Hosts

- Choose a source site of 'infinite' capacity (aka CERN)
 - Write into the "blackhole"
 - No additional file checking (e.g no checksum verification)
- FTS to schedule transfers
 - Modify site limits and Link limits to control number of simultaneous transfers.

 Dataset: ~ 3.5k files, mean size 6.5GB 	80 70
	60
 Max throughput ~ 76 Gb/s @ 1200 concurrent transfers 	00 ge 40
 Average 50Mb/s / per file 	~ 30
 Increases to 80Mb/s /per file for 300 	20
concurrent transfers	10

CephFS Testing

- Managed to achieve writes into a single xrootd client (no storage connected) up to ~75 Gb/s
 - Connected storage is likely to be the real bottleneck ...
- Redo tests:
 - Connected to development CephFS Cluster
 - (unfortunately new experimental cluster not available in time).
- CephFS allows for different stripe counts on directory / files
- Expected theoretical limit of 50Gb/s for this cluster
- Maximum achieved rate ~ 24 Gb/s
 - Testing from 200 1200 concurrent transfers

File Layout Tests

- Control the mapping of files to their RADOS objects (using xattrs)
- stripe_unit
 - determines how much data is written to each Ceph object across the OSDs
- stripe_count
 - how many units of data to write to consecutive OSDs
- object_size
 - how much data can be packed into each RADOS object
- Modified via setfattr (get with getfattr)

\$ touch file getfattr -n ceph.file.layout file # file: file ceph.file.layout="stripe_unit=4194304 stripe_count=1 object_size=4194304 pool=cephfs_data"

https://docs.ceph.com/en/reef/cephfs/file-layouts/

Concentrate on cluster IOPS and IO rates

File layout tests (2) Rate Ceph monitoring IOPs

Ceph monitoring IO Rate

FTS Limit = 200

FTS Limit = 400

- Some variation with FTS concurrency
- Max of 2.5k IOPs (5k theoretical max)
- Small overall change of write rate.
- Tests needed to compare read rates
 - And with random access patterns

Initial FTS overshoot

Stripe unit	Stripe size	Stripe count	IORate [Gi	B/s] IOPs
8		16	2	2.8
4		16	1	2.8
1		16	1	2.4
2		16	1	2.9
1		16	2	3

Looking Forwards: Cluster for UKSRC (SKA)

- UK is expected to hold ~ 200 PB of SKA data on disk for at full operations
 - Some mixture of POSIX and (presumptuously) Object Storage (S3?)
- Primary Usage:
 - Data ingest from the two telescope sites (~ 30 40 Gb/s)
 - Archive to Tape storage
 - Data replication to other SRCNet Nodes (~ 30 40 Gb/s)
 - Internal Data movement within UK (O(100) Gb/s (bursty))
 - User and Production workflows (TBC)
- Extrapolating from this study (dev cluster),
 - and based on 4PB (usable) Ceph cluster (being deployed)
 - Assume O(1) Tb/s (for headroom and internal Ops and Workflows)
 - By 24 PB (usable) should be approaching needed IOPS (in theory?)
- Delivering required output rate will be a future study

New Ceph cluster (4PB usable) for UKSRC

- 312 HDDs: ~60,000 IOPS
 - With 8+3 EC this corresponds to ~6000 client write ops per second.
- 13 nodes with 25+25Gb/s connectivity 650 Gbps
- Network overhead for EC shard redistribution is 1*(10/11) so theoretical throughput is ~50% of available bandwidth
 - Reduce factor 2 due to this study
 - So ~ 150 Gb/s

Summary

- 100Gb/s of throughput not established:
- Development CephFS cluster theoretical limit at 50Gb/s
 - Managed ~24Gb/s in practice
 - With new cluster O(300) OSDs need to repeat tests
- Decoupling the (destination) storage:
 - Achieved 75 Gb/s writes (to /dev/null type plugin) from disk-backed source site
 - Possible only with multiple 100s of concurrent transfers however
 - Testing with XrdBlackhole <-> XrdBlackhole would be interesting
- Future work:
 - Repeat and extend tests with new 4PB cluster (in commissioning)
 - Verify S3 vs POSIX vs 's3 via POSIX-fuse mount' performance speeds
 - For CephFS, tuning of MDS mapping to directories, etc may be critical.

