

Enabling Alternative Architectures

In the ALICE Computing Grid

Maxim Storetvedt, on behalf of the ALICE Collaboration | CHEP 2024 | Kraków, PL | 24/10/2024

A changing resource landscape in the Grid

- Increasing availability of non-x86 based hosts in the WLCG
 - Especially those using **ARM**
- Can be attributed to wider selection of hardware options / OEMs...
 - Ampere Altra/One
 - Nvidia Grace
 - Qualcomm SD1
 - Mediatek
- ...but also increased interest among sites for them
 - Performance relative to price of hardware
 - Advertised with better efficiency
 - Possibility of lowering energy usage
 - Consequently cutting both cost and emissions

A changing resource landscape in the Grid

- Increasing availability of non-x86 bas
 - Especially those using **ARM**
- Can be attributed to wider selection d
 - Ampere Altra/One
 - Nvidia Grace
 - Qualcomm SD1
 - Mediatek
- ...but also increased interest among
 - Performance relative to price of hardware
 - Advertised with better efficiency
 - Possibility of lowering energy usage
 - Consequently cutting both **cost** and **emissions**

pel

Status in the ALICE Grid

- ALICE subset of WLCG predominantly **x86_64**
 - With only x86 used for production workloads

Most common CPUs in ALICE Grid, Oct. 2024

Status in the ALICE Grid

- ALICE subset of WLCG predominantly **x86_64**
 - With only x86 used for production workloads
- But this is rapidly changing
 - Between Dec. 2023 Oct. 2024
 - From 0 aarch64 cores to over 3000!
 - More to come
 - Additional sites have expressed interest
- Must be ready to use all available resources!

CPU vendors in ALICE Grid, Oct. 2024

Status in the ALICE Grid

- ALICE subset of WLCG predominantly x86_64
 - With only x86 used for production workloads
- But this is rapidly changing
 - Between Dec. 2023 Oct. 2024
 - From 0 aarch64 cores to over 3000!
 - More to come
 - Additional sites have expressed interest
- Must be ready to use all available resources!

.... but can we include a different architecture *transparently*?

CPU vendors in ALICE Grid, Oct. 2024

The JAliEn middleware

- The ALICE Grid managed by JAliEn (Java ALICE Environment)
 - Grid middleware for site, central and user-facing components
- Benefits from the **portability** of Java...
- ... but not everything is Java!
 - System binaries
 - Dependencies
 - Runtimes / containers
 - Job payloads
- Needs changes to
 - Accommodate middleware **binaries/dependencies**
 - Allow user jobs to be **matched** against aarch64 resources

Adding support for aarch64

- Initial aarch64 support added in JAliEn 1.7.9 (rel. Sept. 2023)
- Since evolved to include
 - Automatic matching of binaries
 - Automatic matching of jobs
 - Automatic matching of containers
- Changes kept as generic as possible
 - Allows for simple slot-in of other architectures if needed
 - (More on this in a bit)
- End result allows aarch64 resources to be deployed and treated just as any other x86 host
 - Completely transparent for both jobs and users!

ALICE

Ensuring compatibility

- Automatic matching of binaries
 - JAliEn is fully run from **CVMFS**
 - Binaries for each architecture can be provided in dedicated paths and builds

Ensuring compatibility

- Automatic matching of binaries
 - JAliEn is fully run from **CVMFS**
 - Binaries for each architecture can be provided in dedicated paths and builds
- Automatic matching of jobs
 - Once built, the **package** and its compatible **platform** is registered centrally
 - *Platform* is **OS version + architecture** of build (el9-aarch64, el9-x86_64, el7-x86_64, etc.)
 - WNs will advertise their platform, and be matched centrally against package availability

Ensuring compatibility

- Automatic matching of binaries
 - JAliEn is fully run from **CVMFS**
 - Binaries for each architecture can be provided in dedicated paths and builds
- Automatic matching of jobs
 - Once built, the **package** and its compatible **platform** is registered centrally
 - *Platform* is **OS version + architecture** of build (el9-aarch64, el9-x86_64, el7-x86_64, etc.)
 - WNs will advertise their platform, and be matched centrally against package availability
- <u>Automatic matching of containers</u>
 - Each WN can provide multiple (OS) platforms: attempts to find a common build OS across all the packages defined in a job
 - Combined with the system architecture to form a "compatibility string", which match package platforms
 - e.g compat_el9-aarch64
 - Each string corresponds to a CVMFS symlink to a compatible container
 - e.g:compat_el9-aarch64 -> /cvmfs/alice.cern.ch/.../alma9-alice-20231212-aarch64

Ensuring compatibility (2)

- In other words: job matching is based on requested packages
 - Architecture of WN irrelevant as long as it can run all packages required by job
 - Compatible OS always provided by container
 - Availability of **one** aarch64 build for package across any OS is the only requirement for a job match
- Only requirement is ensuring that all packages and containers are built for **both** x86 and aarch64
- Dedicated build machine set up for this purpose
 - Ampere Altra Max 128 (N1) / 1TB RAM
 - Built packages automatically registered and pushed to CVFMS
 - Loaded from CVMFS by JAliEn using AliEnv (modulecmd wrapper) upon job start

Initial results

- First aarch64 resources available Dec.2023
 - Courtesy of University of Glasgow
 - Up and running within just a few days
 - No major issues
- Average x86 job was ~22% faster than aarch64¹
 - And CPU efficiency 15% higher
- But jobs on ARM have **99%** success rate!
 - Compared to 78% on x86
 - No large memory spikes, which kill many x86 jobs
- Conclusion:
 - Aarch64 hardware is very promising for ALICE jobs
 - Lower cost than x86 alternatives also a bonus

[1]: Ampere Altra Q80-30

CHEP 2024 | Kraków, PL | Enabling Alternative Architectures in ALICE | Maxim Storetvedt

NTIMEFRAMES = 5, NSIGEVENTS=200

Caveat emptor

- Testing put on hold after Feb. 2024
 - Aarch64 jobs found to crash on a subset of kernels
 - Including the **default** kernel on Enterprise Linux 9 (EL9)
- Changing to a new architecture highlighted architecture-dependent code/assumptions
 - Including a possible memory overwrite, which was found and fixed [2]
 - Also present on x86, but behaviour between architectures very different
 - x86 would keep running, while aarch64 would crash immediately
- Delayed full adoption of aarch64 in production
 - But resulted in improved code quality / reliability across architectures
- Testing and physics validation to proceed once all looks good
 - Steps towards production use at ALICE in 2024!

Beyond ARM

Adjustments to accommodate aarch64 not specific to just one architecture

- Every change kept as generic as possible
- Simple to "slot-in" more architectures by
 - Adding appropriate binaries for JAliEn in dir for <arch> (in CVMFS)
 - e.g. /cvmfs/.../<arch>/JDK, /cvmfs/.../<arch>/apptainer
 - Creating <arch> versions of containers
 - Set up build machine to build/publish new packages Sep 1
- Proof of concept: support added for riscv64
 - Riscv64 binaries for Java and Apptainer in CVMFS
 - Rest handled by JAliEn (binary / container matching)
 - Dependencies included in container image

Middleware components only, as there are no production packages built for riscv64

Sep 12 14:24:52 [trace]: Job inserted by pcapiserv06.cern.ch [Masterjob is 3153021969]
Sep 12 14:24:52 [state]: Job state transition to WAITING
Sep 12 15:47:36 [state]: Job ASSIGNED to: ALICE::CERN::Juno
Sep 12 15:47:36 [trace]: Job asks for a TTL of 28000 seconds
Sep 12 15:47:37 [trace]: This job has requested packages available on the following platforms: null.
Sep 12 15:47:37 [trace]: Slot with no memory limits configured in cgroup configuration. Parsed cgroupV2
Sep 12 15:47:37 [trace]: Job asks for a TTL of 28000 seconds
Sep 12 15:47:38 [trace]: Created workdir: /root/alien-job-3153021973
Sep 12 15:47:38 [trace]: Running JAliEn JobAgent 1.9.2 on sambook-riscv. Builddate: 1726148359000
Sep 12 15:47:38 [trace]: Warning: this job is being executed on an alternative architecture: riscv64
Sep 12 15:47:38 [trace]: Job requested 1 CPU cores to run
Sep 12 15:47:38 [trace]: Local disk space limit: 10240 MB
Sep 12 15:47:38 [trace]: Virtual memory limit (JDL): 1024MB
Sep 12 15:47:38 [trace]: Virtual memory limit (JDL): 1024MB
Sep 12 15:47:39 [trace]: Starting JobWrapper
Sep 12 15:47:39 [trace]: Job asks for a TTL of 28000 seconds
Sep 12 15:47:39 [trace]: JobWrapper started

Riscv64 job running in JAliEn 1.9.2

Summary and outlook

- **ARM** and other non-x86 resources are becoming increasingly more **relevant** in the ALICE Grid
 - Increased hardware availability and competitiveness
 - Important to ensure these new resources can be fully **utilised**
- Support for aarch64 added within the ALICE middleware JAliEn
 - Use of x86/aarch64 resources completely **transparent** for both jobs and end users
 - Achieved by matching jobs by the **packages** available across WNs
- Provided changes can also scale across multiple architectures
 - Adding Java + container binaries to CVMFS is enough
 - Rest handled by JAliEn
 - Proof-of-concept **riscv64** support already enabled
- Initial experience from running ALICE Grid jobs on aarch64 hardware very **promising**
 - Delay due to necessity to validate the experimental software and fix platform-exposed bugs
 - Ready to resume testing at **full speed** once fix is merged
 - Towards production!