(5

ALICE

Unprivileged subdivision of job resources
Within the ALICE Computing Grid

Maxim Storetvedt, on behalf of the ALICE Collaboration | CHEP 2024 | Krakdéw, PL | 23/10/2024

Running Jobs in the ALICE Grid ALICE

12k+ nodes, consisting of over 50 sites across 27 countries and regions
« Just over 70k jobs’ last week, using 210k+ cores

Managed by the Java ALICE Environment (JALEN) Grid middleware
* JALEN job pilot fills a “slot” on each host (i.e. worker node), assignhed by site resource manager
* Various limitations apply : CPU(s) / Memory / Storage

Each slot may have a mix of both single- and multi-core payloads running in parallel
* Number of cores may vary, with 1, 2 and 8 core jobs being most common
* Filled and managed by the job pilot to best utilise the slot resources

Jobs overusing slot resources are automatically killed
e Either by JALEN, or by other safeguards (local resource manager, e.g. HTCondor / Slurm)

'Executable batch-type task

CHEP 2024 | Krakow, PL | Unprivileged subdivision of job resources | Maxim Storetvedt 2

Inside a JALIEn job slot i

Worker node
(16 core, 64GB)

* Each slot, 8+ cores is managed by a job single pilot
* Same pilot may host multiple jobs
* The same worker node may also have multiple JALEnN slots

Slot
(8 core, 32GB)

JAIEn pilot

Job #1: 4 core, 16GB
|

Job #2: 4 core, 16GB

~\

Slot
(8 core, 32GB)

JAIIEn pilot

Job #1: 4 core, 16GB
1

Job #2: 2 core, 8GB

Job #3: 2 core, 8GB

\

CHEP 2024 | Krakow, PL | Unprivileged subdivision of job resources | Maxim Storetvedt

ALICE

Inside a JALIEn job slot

* Each slot, 8+ cores is managed by a job single pilot
* Same pilot may host multiple jobs
* The same worker node may also have multiple JALEnN slots

* |Increasing number of sites also offering whole node
configurations

e Slot encompassing all resources of a worker node

* JALEN pilot takes up full management responsibility
* Allows for better resource handling

\

Worker node
(16 core, 64GB)

Slot
(16 core, 64GB)

JAIEn pilot

Job #1: 4 core, 16GB

Job #2: 4 core, 16GB

Job #3: 4 core, 16GB

Job #4: 2

core, 8GB

Job #5: 2

core, 8GB

CHEP 2024 | Krakow, PL | Unprivileged subdivision of job resources | Maxim Storetvedt

ALICE

Managing misbehaving jobs

ALICE

* Jobs overusing slot resources are automatically killed
e Either by JALEN, or by other safeguards (local resource manager, e.g. HTCondor / Slurm)

* Butthe consequences are very different depending on who/what called the kill!

Scenario #1:
job overusing memory,
but total still within slot

-

Worker node
(16 core, 64GB)

Slot
(8 core, 32GB)

JAIEn pilot

1
Job #1: 4 core, 16GB

Job #2: 4 core, 16GB

Total: 32GB(?)

~\

CHEP 2024 | Krakow, PL | Unprivileged subdivision of job resources | Maxim Storetvedt 4

Managing misbehaving jobs ALICE

* Jobs overusing slot resources are automatically killed
e Either by JALEN, or by other safeguards (local resource manager, e.g. HTCondor / Slurm)

* Butthe consequences are very different depending on who/what called the kill!

G ~

Scenario #1: NVGHEGr fioHe
job overusing memory, (16 core, 64GB)
but total still within slot

Slot
(8 core, 32GB)

JAIIEn pilot | ~20GB

1

Job #1: 4 core, Y
1

Job #2: 4 core, YHfHPB

Total: 32GB ~12CB

CHEP 2024 | Krakow, PL | Unprivileged subdivision of job resources | Maxim Storetvedt 4

Managing misbehaving jobs

ALICE

* Jobs overusing slot resources are automatically killed
e Either by JALEN, or by other safeguards (local resource manager, e.g. HTCondor / Slurm)

* Butthe consequences are very different depending on who/what called the kill!

Scenario #1:
job overusing memory,
but total still within slot

- Detected by JAIIEnN pilot

-

Worker node
(16 core, 64GB)

Slot
(8 core, 32GB)

1
Job #1: 4 core, Y

I
Job #2: 4 core, YHfHPB

Total: 32GB

~1

JAIEN pilot | “~006B

GB

~\

CHEP 2024 | Krakow, PL | Unprivileged subdivision of job resources | Maxim Storetvedt 4

Managing misbehaving jobs

* Jobs overusing slot resources are automatically killed
e Either by JALEN, or by other safeguards (local resource manager, e.g. HTCondor / Slurm)

* Butthe consequences are very different depending on who/what called the kill!

Scenario #1:
job overusing memory,
but total still within slot

- Detected by JAIIEnN pilot
- Misbehaving job killed

CHEP 2024 | Krakow, PL | Unprivileged subdivision of job resources | Maxim Storetvedt

-

Worker node
(16 core, 64GB)

Slot
(8 core, 32GB)

JAIIEn pilot

Job GB

I
Job #2: 4 core, YHfHPB

Total: 12GB

~1

GB

~\

ALICE

Managing misbehaving jobs

* Jobs overusing slot resources are automatically killed
e Either by JALEN, or by other safeguards (local resource manager, e.g. HTCondor / Slurm)

* Butthe consequences are very different depending on who/what called the kill!

Scenario #1:
job overusing memory,
but total still within slot

- Detected by JAIIEnN pilot
- Misbehaving job killed
- Assigned new job(s)

CHEP 2024 | Krakow, PL | Unprivileged subdivision of job resources | Maxim Storetvedt

Ve

Worker node
(16 core, 64GB)

Slot
(8 core, 32GB)

JAIIEn pilot

1
Job #3: 4 core, 1GGB|

1
Job #2: 4 core,

i)

Total: 28GB

~12GB

~\

ALICE

Managing misbehaving jobs

* Jobs overusing slot resources are automatically killed

e Either by JALEN, or by other safeguards (local resource manager, e.g. HTCondor / Slurm)

* Butthe consequences are very different depending on who/what called the kill!

-

Worker node
(16 core, 64GB)

Slot
(8 core, 32GB)

JAIEn pilot

1
Job #1: 4 core, 16GB

Job #2: 4 core, 16GB

Total: 32GB(?)

~\

Scenario #2:
job overusing memory,
but total beyond slot

CHEP 2024 | Krakow, PL | Unprivileged subdivision of job resources | Maxim Storetvedt

ALICE

Managing misbehaving jobs

* Jobs overusing slot resources are automatically killed

e Either by JALEN, or by other safeguards (local resource manager, e.g. HTCondor / Slurm)

* Butthe consequences are very different depending on who/what called the kill!

-

Worker node
(16 core, 64GB)

Slot
(8 core, 32GB)

JAIEn pilot

~30GB

1
Job #1: 4 core, Y

I
Job #2: 4 core, YHfHPB

Total: 45GB!

~15GB

~\

Scenario #2:
job overusing memory,
but total beyond slot

CHEP 2024 | Krakow, PL | Unprivileged subdivision of job resources | Maxim Storetvedt

ALICE

Managing misbehaving jobs

* Jobs overusing slot resources are automatically killed

e Either by JALEN, or by other safeguards (local resource manager, e.g. HTCondor / Slurm)

* Butthe consequences are very different depending on who/what called the kill!

Ve

Worker node
(16 core, 64GB)

Slot
(8 core, 32GB)

JAIIEn pilot

~30GB

Job #1: 4 cl,ore, W‘
1

Job #2: 4 core,

i)

Total: 45GB!

~1 5GBJ

~\

Scenario #2:
job overusing memory,
but total beyond slot

- Detected by resource manager

CHEP 2024 | Krakow, PL | Unprivileged subdivision of job resources | Maxim Storetvedt

ALICE

Managing misbehaving jobs ALICE

* Jobs overusing slot resources are automatically killed

e Either by JALEN, or by other safeguards (local resource manager, e.g. HTCondor / Slurm)

* Butthe consequences are very different depending on who/what called the kill!

G ~

Worker node Scenario #2:
(16 core, 64GB) : -
job overusing memory,

Slot but total beyond slot
(8 core, 32GB)
- Detected by resource manager

- Slot killed by resource manager

CHEP 2024 | Krakow, PL | Unprivileged subdivision of job resources | Maxim Storetvedt

Managing misbehaving jobs

* Jobs overusing slot resources are automatically killed

®

ALICE

e Either by JALEN, or by other safeguards (local resource manager, e.g. HTCondor / Slurm)

* Butthe consequences are very different depending on who/what called the kill!

Ve

Worker node
(16 core, 64GB)

CHEP 2024 | Krakow, PL | Unprivileged subdivision of job resources | Maxim Storetvedt

~\

Scenario #2:
job overusing memory,
but total beyond slot

- Detected by resource manager
- Slot killed by resource manager
- All jobs are lost!

Managing misbehaving jobs

* Jobs overusing slot resources are automatically killed

®

ALICE

e Either by JALEN, or by other safeguards (local resource manager, e.g. HTCondor / Slurm)

* Butthe consequences are very different depending on who/what called the kill!

Ve

Worker node
(16 core, 64GB)

CHEP 2024 | Krakow, PL | Unprivileged subdivision of job resources | Maxim Storetvedt

~\

Scenario #2:
job overusing memory,
but total beyond slot

- Detected by resource manager
- Slot killed by resource manager
- All jobs are lost!

Often consequence of arbitrary
upper limits set by users

The need for better resource management

* While single-core was the norm:
* 1slot=1job
* Minimalimpactif job killed by agent or something else

* This has changed with modern multi-core workflows:

* Misbehaving jobs, detected and killed by the JALEnN pilot, remain low impact
* Only offending job terminated
* Slot refilled
* Nointerruption to other jobs

* But misbehaving jobs, detected and killed by a resource manager, have very high impact
* Slotis terminated
* Offending job within is killed, but so are all other jobs
* (Can be disastrous on whole-node slots

CHEP 2024 | Krakow, PL | Unprivileged subdivision of job resources | Maxim Storetvedt 5

Towards better management ALICE

A number of tools available within Linux, such as “taskset”
* Now used by the pilot to better constrain CPU resources through CPU pinning [1]

* But majority of Linux utilities for resource management require root
* This changes with the recent introduction of Control Groups (Cgroups) v2 in Linux
* Allows for delegating per-process resource controls to unprivileged users...*

Requires CPUAccounting, CPUWeight, CPUQuota, AllowedCPUs,
delegation AllowedMemoryNodes
Requires IOWeight, IOReadBandwidthMax, IOWriteBandwidthMax,
delegation IODeviceLatencyTargetSec
Yes* MemoryLow, MemoryHigh, MemoryMax, MemorySwapMax
Yes* TasksMax

CHEP 2024 | Krakow, PL | Unprivileged subdivision of job resources | Maxim Storetvedt 6

https://indico.cern.ch/event/1106990/papers/4991211/files/11607-CPUpinning_MartaBertran.pdf

Limitations of unprivileged cgroups v2 ALICE

* Fully unprivileged cgroups generally run inside the user.slice
* Permissions/ownership set up automatically during user login
* Butthis does not apply to users in a batch slot

* Unavailable to non-interactive users
* |Including user in slot running the JAlien pilot

* Unless, the useris given ownership of
* The cgroup —i.e. its top-level directory in /sys/fs/cgroup
* The cgroup.procs file — to allow moving processes in/out of it
* The cgroup.subtree_control file — to allow delegation of controllers to subgroups

...but, is this not done by CE/LRMS when slot (and its cgroup) is created?

CHEP 2024 | Krakow, PL | Unprivileged subdivision of job resources | Maxim Storetvedt 7

Status of unprivileged cgroups v2 in common CEs ALICE

* SLURM

* New cgroup/directory created on each new job for slot

* Cgroup ownership set to that of the executing user — great!
* But only cgroup ownership. All files inside still owned by root

e HTCondor

* New cgroup/directory created on each new job for slot 6.76%
* But allfiles/directories owned by root
® HTCondor

® Slurm
= Other

Distribution of LRMs in the ALICE Grid, Oct. 2024

CHEP 2024 | Krakow, PL | Unprivileged subdivision of job resources | Maxim Storetvedt 8

Workaround: a custom cgroups v2 plugin

Proof of concept Cgroups v2 plugins created for SLURM & HTCondor
* Sets the appropriate permissions, and checks for subgroups in cleanup

Tested with custom jobs that
* Checked for given privileges
* Attempted creating subgroups, move processes and apply limits on them
* Attempt breaking process limits

Fully working, even with an unprivileged user
Change upstreamed and included in HTCondor 23.1 [2]

Workarounds still required for Slurm

CHEP 2024 | Krakow, PL | Unprivileged subdivision of job resources | Maxim Storetvedt

®

ALICE

HTConad%r

Software Suite

https://htcondor.readthedocs.io/en/latest/version-history/feature-versions-23-x.html#version-23-1-0

New Cgroups v2 features within the job pilot

* Unprivileged cgroups open up new possibilities for the JAULEN job pilot

e Can be used to box-in and subdivide a slot
* Cgroup controllers available for CPU, 10, Memory

* Eachjob maythen runin a smaller subpartition of given resources

CHEP 2024 | Krakow, PL | Unprivileged subdivision of job resources | Maxim Storetvedt

Precise control over job resource use, without overreaching

Slot cgroup
(8 core, 32GB)

JAIIEn pilot
I

Slot cgroup
(8 core, 32GB)

JAIEn pilot

Job #1: 4 core, 16GB

Job #1: 4 core, 16GB

Sub-cgroup
(4 core, 16GB)

Job #1

Sub-cgroup
(4 core, 16GB)

Job #2

ALICE

10

New Cgroups v2 features within the job pilot ALICE

* Unprivileged cgroups open up new possibilities for the JAULEN job pilot

 Can be used to box-in and subdivide a slot
* Cgroup controllers available for CPU, 10, Memory

* Each job maythen runin a smaller subpartition of given resources
* Precise control over job resource use, without overreaching

* Aslong as all required controllers are properly delegated down the cgroup tree!
« HTCondor will create a new cgroup with correct ownership
* But setup and management of new subgroups must instead be done by the job pilot

CHEP 2024 | Krakow, PL | Unprivileged subdivision of job resources | Maxim Storetvedt 10

New Cgroups v2 features within the job pilot (2)

* Each JALIEn pilot consists of three components:
* JALEN JobRunner: Resource/multicore handler
* JAULEN JobAgent: Job matcher/monitoring handler
* JALENn JobWrapper: Payload executor

* The JobWrapper runs on a separate JVM
* Handles payload that can be several cores per job slot

* Pilot logic adjusted to accommodate for cgroups v2 limits:
* Top level slot cgroup creation and delegation of controllers
* Via JobRunner
* Job cgroup creation and limits
* Via JobAgent

CHEP 2024 | Krakow, PL | Unprivileged subdivision of job resources | Maxim Storetvedt

ALICE

—p

BQAgent| \worker node

Starts |

JAIIEn JobRunner

Starts

- : ¥
JAIIEn JobAgent #1 iy

Container
L R o L

Data
pipe
Starts

Payload

11

New Cgroup tree for JALIEn slots

ALICE
[Slot cgroup (v2)]
e.g. “condor slot1 1”
! Runner | [E—— » Contains JobRunner process (starts JobAgents)
! Agents | [———— » Subgroups created by JobAgent for each new job
. Original slot limit JobAgent 0 | ------------- > Payload / job process
Custom limitforjoo | | [“hAment 1 | ,
. (CPU/Memory/I0) | JobAgent_1 » Payload / job process
. JobAgent N | ------------- » Payload / job process

CHEP 2024 | Krakow, PL | Unprivileged subdivision of job resources | Maxim Storetvedt 12

Subdividing a slot cgroup ALICE

e Controllers may only be delegated down empty cgroups
* JobRunner and initial bootstrap procs must be moved somewhere first
* New cgroup created for this purpose: “runner”

* New cgroup is also created for where to place each job in the same step: “agents”
* While still empty, delegate the controllers from previous step down to this group

* Once controllersin place, each agent willimpose a resource limit on each new subgroup
* Partitioned depending on free resources remaining in slot
* |deally, equivalent to what is requested by job
* But never more than total of free resources in a slot

CHEP 2024 | Krakow, PL | Unprivileged subdivision of job resources | Maxim Storetvedt 13

Summary ALTCE

The shift to multicore has given job pilots more responsibility in resource management
* Anincreasingly challenging process, as misbehaving jobs risk being killed by slot
* Exacerbated by several payloads in same slot, and arbitrary requirements set by users

Cgroups v2 provide means for better resource control, unprivileged
* But generally unavailable to non-interactive batch users

Steps taken to enable use of unprivileged cgroups v2 in ALICE Grid
 Changesin upstream HTCondor for appropriate group ownership in slot
* Group creation and delegation of controllers by JALEN pilot

Combined, allows the resources of a slot to be subdivided into smaller “partitions”
 Each with a custom resource limit appropriate for its job
* Prevented from going above slot, and may easily be managed by JAULEN

CHEP 2024 | Krakow, PL | Unprivileged subdivision of job resources | Maxim Storetvedt 14

Backup

Subdividing a slot cgroup ALICE

CHEP 2024 | Krakow, PL | Unprivileged subdivision of job resources | Maxim Storetvedt 28

Subdividing a slot cgroup ALICE

CHEP 2024 | Krakow, PL | Unprivileged subdivision of job resources | Maxim Storetvedt 29

Subdividing a slot cgroup ALICE

[[proc-1](proc-2)]

CHEP 2024 | Krakow, PL | Unprivileged subdivision of job resources | Maxim Storetvedt 30

Subdividing a slot cgroup ALICE

[[proc-1](proc-2) (proc-3J]

CHEP 2024 | Krakow, PL | Unprivileged subdivision of job resources | Maxim Storetvedt 31

Subdividing a slot cgroup ALICE

CHEP 2024 | Krakow, PL | Unprivileged subdivision of job resources | Maxim Storetvedt 32

Subdividing a slot cgroup ALICE

CHEP 2024 | Krakdéw, PL | Unprivileged subdivision of job resources | Maxim Storetvedt 33

Subdividing a slot cgroup ALICE

CHEP 2024 | Krakdéw, PL | Unprivileged subdivision of job resources | Maxim Storetvedt 34

Subdividing a slot cgroup ALICE

CHEP 2024 | Krakdéw, PL | Unprivileged subdivision of job resources | Maxim Storetvedt 35

Subdividing a slot cgroup ALICE

CHEP 2024 | Krakdéw, PL | Unprivileged subdivision of job resources | Maxim Storetvedt 36

Subdividing a slot cgrou Delagate controllers
g g p (via cgroup.subtree_control) HLICE

CHEP 2024 | Krakow, PL | Unprivileged subdivision of job resources | Maxim Storetvedt 37

Subdividing a slot cgrou Delagate controllers
g g p (via cgroup.subtree_control) HLICE

CHEP 2024 | Krakdéw, PL | Unprivileged subdivision of job resources | Maxim Storetvedt 38

Subdividing a slot cgroup ALICE

CHEP 2024 | Krakdéw, PL | Unprivileged subdivision of job resources | Maxim Storetvedt 39

Subdividing a slot cgroup ALICE

proc-s

CHEP 2024 | Krakdéw, PL | Unprivileged subdivision of job resources | Maxim Storetvedt 40

Subdividing a slot cgroup ALICE

CHEP 2024 | Krakow, PL | Unprivileged subdivision of job resources | Maxim Storetvedt 41

