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Introduction

e Job Optimizer is a service responsible for splitting a larger job into smaller
subjobs for the ALICE grid middleware JAIIEn

e Job submission frequency varies
o Often a large number of jobs are submitted at once
o  Which induces a high load on the Job Optimizer and creates a queue of jobs to be split
o This in turn delays the processing of the workload on the Grid
e |mproving the service efficiency:
o Make the service horizontally scalable

m Reduce the time between inserting a new workload in the queue and its subjobs
starting on the grid nodes
o Improve the interactions with the DB
m Reduce table locking
m  Shorten connection time

o If possible, improve job splitting to better make use of grid resources




Example of Job Optimizer overload
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“Inserting” is the state indicating it is ready to be picked up by Job Optimizer



Horizontal scaling of the Job Optimizer

e New Job Optimizer capabilities
o  Multiple instances and threads
o Running on several hosts, as many as needed to process rapidly the submitted jobs
o  Turning off multiple instances for servicing and upgrades is not disruptive for the overall operations

e Adding more instances assures future proofing with increase in Grid resources and

job numbers
o Higher focus on consistency as a result of increased parallelization

Total allocated cores per site




Introducing the new Job Optimizer in service

e Start of operation mid-March

o Immediate 'disappearance' of waiting
to be split jobs

e After an incident in April, a very
large workload to be split, the

service was further optimized
o  No further incidents registered
o Stable operation

o
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Further optimization of the Job Splitting algorithms

e In addition to the general improvement of the Job Optimizer, specific tuning of

the job splitting algorithms was done
o Part of the improvements are common for all jobs
o Most complex case is splitting by data locality
m Job attributes are added to match the jobs only with sites holding the dataset
o This method involves multiple interactions with the file catalogue
m Data lookup is expensive
m Furthermore, some jobs end up with very few files to process
e Several jobs can be merged together to improve efficiency and reduce splitting



Job splitting by data locality

e Data lookup for physical location is a costly operation
o  Especially true for larger collections of above 1000 data files Lonical Fle Naimo

o  All other splitting strategies require a single DB lookup
m Splitting by data locality requires up to 3 DB lookups

e Introducing a partitioned DB, which holds the locality information

o  This is advantageous for faster lookups and faster indexing f . \
e Take advantage of partitioned DB to further improve data
collection lookup Split by
1. Divide the data collection by partition l operation
2. Do a bulk lookup query for each partition table
- /

Lookup required to find physical
storage of a data file



Lookup time as function of collection size

e With the old system, the time
for data lookup increases
exponentially with the size of

data collection
o  Bulk data lookup time is
significantly reduced and is
essentially flat, irrespective of the
data set size
— Average individual lookup

e Time in seconds for the = Soreoretoltofon

average sized data collection
o  Single lookup: 7,35s
o  Vector lookup: 0,49s
o Improvement of x15 for this
case, significantly larger for Number of files

Time to lookup files in a collection
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Job splitting based on data locality

Distribution of group size of input files

e Data is grouped based physical locations
o  ALICE files typically have two replicas
o Data required by a split job must be located on a
given site for the job to be matched

e However an issue becomes apparent...
o  The number of files in a data group is a function
of the size of the site storage element
o Data group sizes can differ by hundreds, even
thousands of files

Number of groups
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Merging of data locality groups

e Idea is to merge smaller data groups to create
more balanced subjobs
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and size

If no shared data locality base merge on distance
between data localities

m  Another service keeps the distances up to date

e Caveat: Files are not always available locally
on site after merging
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Results of merging subjobs

How often a certain group size appears before and after merging of file groups

e More balanced data groups
Percentage of data groups
needed to merge on average:
11.87%
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New Job Optimizer advantages

e With all functionality improvements introduced on the past slides, the

operation of job insertion is done in a single DB transaction
o Inserting does not require a lock blocking rows or table for other connections
o However, to keep DB consistency a single write lock on a row is required

e Preprocess queries towards database before transaction to shorten
connection usage
e Query failure related to locking of tables have to be handled separately

with a retry
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Batch Insert

e Large DB transactions for thousand of subjobs are slow if done in series

e To avoid this issue, the insertion is done in batches
o Results in a significant performance boost
o Drawback - batch is emptied both in case of success or failure
m Failure related to table locking will trigger the creation of the batches again
m Rare enough occurrence to negate the performance gain
o Improvements only seen if number of subjobs are in the thousands
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Result of batch insert

e Tangible difference in

performance on large jobs
o Improvement by about 5% for
large job inserts

e Several seconds saved on
shared connection usage

e Large portion of time is
preprocessing job parameters
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Summary and outlook

e Horizontally scalable Job Optimizer implementation solved the workload processing
backlog issue in the ALICE job management system

e Large performance improvements by change of DB query methods and structure
o  Vector operations for file replica lookups
o Less connection usage and as little locking as possible
m This improves uptime for database connection for other services of JAIIEn
e Significant further improvement can be achieved in the warehousing of split jobs
o Every split job JDL is currently saved in its entirety, although most of the information is repeating and

redundant
o  We are working on storing only a delta of the JDL containing the unique fields with respect to the

original job JDL
m Advantage - Will save more than 80% of the DB space currently used
m Disadvantage - Requires more SQL queries
m  We are looking for the best compromise of the two
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