
Implementation and Performance Analysis of the 
ALICE grid middleware JAliEn’s Job Optimizer

On behalf of the ALICE Collaboration

Haakon Andre Reme-Ness

CHEP 2024, 21 - 25 October



Introduction

● Job Optimizer is a service responsible for splitting a larger job into smaller 
subjobs for the ALICE grid middleware JAliEn

● Job submission frequency varies
○ Often a large number of jobs are submitted at once
○ Which induces a high load on the Job Optimizer and creates a queue of jobs to be split
○ This in turn delays the processing of the workload on the Grid

● Improving the service efficiency:
○ Make the service horizontally scalable

■ Reduce the time between inserting a new workload in the queue and its subjobs 
starting on the grid nodes

○ Improve the interactions with the DB
■ Reduce table locking 
■ Shorten connection time

○ If possible, improve job splitting to better make use of grid resources

2



Example of Job Optimizer overload

● Single Job Optimizer:
○ Unable to handle bursty job submission
○ Not scalable for higher traffic

● Large backlog of workloads queued 
for processing

3

“Inserting” is the state indicating it is ready to be picked up by Job Optimizer



Horizontal scaling of the Job Optimizer

● New Job Optimizer capabilities
○ Multiple instances and threads
○ Running on several hosts, as many as needed to process rapidly the submitted jobs
○ Turning off multiple instances for servicing and upgrades is not disruptive for the overall operations

● Adding more instances assures future proofing with increase in Grid resources and 
job numbers

○ Higher focus on consistency as a result of increased parallelization

4



Introducing the new Job Optimizer in service

● Start of operation mid-March
○ Immediate 'disappearance' of waiting 

to be split jobs

● After an incident in April, a very 
large workload to be split, the 
service was further optimized

○ No further incidents registered 
○ Stable operation

5

New Job Optimizer in production

April 
incident



Further optimization of the Job Splitting algorithms

● In addition to the general improvement of the Job Optimizer, specific tuning of 
the job splitting algorithms was done

○ Part of the improvements are common for all jobs
○ Most complex case is splitting by data locality

■ Job attributes are added to match the jobs only with sites holding the dataset
○ This method involves multiple interactions with the file catalogue

■ Data lookup is expensive
■ Furthermore, some jobs end up with very few files to process 

● Several jobs can be merged together to improve efficiency and reduce splitting

6



Job splitting by data locality

● Data lookup for physical location is a costly operation
○ Especially true for larger collections of above 1000 data files
○ All other splitting strategies require a single DB lookup

■ Splitting by data locality requires up to 3 DB lookups

● Introducing a partitioned DB, which holds the locality information
○ This is advantageous for faster lookups and faster indexing

● Take advantage of partitioned DB to further improve data 
collection lookup
1. Divide the data collection by partition
2. Do a bulk lookup query for each partition table

7

Lookup required to find physical 
storage of a data file



Lookup time as function of collection size

● With the old system, the time 
for data lookup increases 
exponentially with the size of 
data collection

○ Bulk data lookup time is 
significantly reduced and is 
essentially flat, irrespective of the 
data set size

● Time in seconds for the 
average sized data collection

○ Single lookup: 7,35s
○ Vector lookup: 0,49s
○ Improvement of x15 for this 

case, significantly larger for 
large datasets.

8



Job splitting based on data locality

● Data is grouped based physical locations
○ ALICE files typically have two replicas
○ Data required by a split job must be located on a 

given site for the job to be matched

● However an issue becomes apparent…
○ The number of files in a data group is a function 

of the size of the site storage element
○ Data group sizes can differ by hundreds, even 

thousands of files

9



Merging of data locality groups 

● Idea is to merge smaller data groups to create 
more balanced subjobs

○ Find all small data groups
○ Merge data groups based on one shared data locality 

and size
○ If no shared data locality base merge on distance 

between data localities
■ Another service keeps the distances up to date

● Caveat: Files are not always available locally 
on site after merging

10

UntouchedMerge



Results of merging subjobs

● More balanced data groups
● Percentage of data groups 

needed to merge on average: 
11.87%

● Remote download of files does 
not increase significantly 
○ Therefore no added burden 

on network

11



New Job Optimizer advantages

● With all functionality improvements introduced on the past slides, the 
operation of job insertion is done in a single DB transaction

○ Inserting does not require a lock blocking rows or table for other connections
○ However, to keep DB consistency a single write lock on a row is required

● Preprocess queries towards database before transaction to shorten 
connection usage

● Query failure related to locking of tables have to be handled separately 
with a retry

12



Batch Insert

● Large DB transactions for thousand of subjobs are slow if done in series
● To avoid this issue, the insertion is done in batches

○ Results in a significant performance boost
○ Drawback - batch is emptied both in case of success or failure

■ Failure related to table locking will trigger the creation of the batches again
■ Rare enough occurrence to negate the performance gain

○ Improvements only seen if number of subjobs are in the thousands

13



Result of batch insert

● Tangible difference in 
performance on large jobs

○ Improvement by about 5% for 
large job inserts

● Several seconds saved on 
shared connection usage

● Large portion of time is 
preprocessing job parameters

14



Summary and outlook

● Horizontally scalable Job Optimizer implementation solved the workload processing 
backlog issue in the ALICE job management system

● Large performance improvements by change of DB query methods and structure
○ Vector operations for file replica lookups
○ Less connection usage and as little locking as possible

■ This improves uptime for database connection for other services of JAliEn
● Significant further improvement can be achieved in the warehousing of split jobs

○ Every split job JDL is currently saved in its entirety, although most of the information is repeating and 
redundant

○ We are working on storing only a delta of the JDL containing the unique fields with respect to the 
original job JDL

■ Advantage - Will save more than 80% of the DB space currently used 
■ Disadvantage - Requires more SQL queries
■ We are looking for the best compromise of the two

15


