Western Norway
University of
Applied Sciences

ALICE

Implementation and Performance Analysis of the
ALICE grid middleware JAIIEn’s Job Optimizer

Haakon Andre Reme-Ness

On behalf of the ALICE Collaboration

CHEP 2024, 21 - 25 October

Introduction

e Job Optimizer is a service responsible for splitting a larger job into smaller
subjobs for the ALICE grid middleware JAIIEn

e Job submission frequency varies
o Often a large number of jobs are submitted at once
o Which induces a high load on the Job Optimizer and creates a queue of jobs to be split
o This in turn delays the processing of the workload on the Grid
e |mproving the service efficiency:
o Make the service horizontally scalable

m Reduce the time between inserting a new workload in the queue and its subjobs
starting on the grid nodes
o Improve the interactions with the DB
m Reduce table locking
m Shorten connection time

o If possible, improve job splitting to better make use of grid resources

Example of Job Optimizer overload

4750 ‘
e Single Job Optimizer: B | | f 7
o Unable to handle bursty job submission =1 ' | ' /| fl

o Not scalable for higher traffic wsoi | IREE A
e Large backlog of workloads queued [/ | | BARNRR BTl

for processing

500 ’

pa

250

L
oy d

/ .
Dec Feb Apr Jun Aug Oct Dec Feb Apr Jun Aug Oct Dec Feb Apr Jun Aug Oct Dec Feb Apr Jun Aug Oct Dec Feb Apr Jun Aug Oct Dec
2019 2021 I

2018 2020 2022 2023
-+ Inserting Jobs

“Inserting” is the state indicating it is ready to be picked up by Job Optimizer

Horizontal scaling of the Job Optimizer

e New Job Optimizer capabilities
o Multiple instances and threads
o Running on several hosts, as many as needed to process rapidly the submitted jobs
o Turning off multiple instances for servicing and upgrades is not disruptive for the overall operations

e Adding more instances assures future proofing with increase in Grid resources and

job numbers
o Higher focus on consistency as a result of increased parallelization

Total allocated cores per site

Introducing the new Job Optimizer in service

e Start of operation mid-March

o Immediate 'disappearance' of waiting
to be split jobs

e After an incident in April, a very
large workload to be split, the

service was further optimized
o No further incidents registered
o Stable operation

o
200 (1

TaskQueue - Job status

1

==

New Job Optimizer in production

‘ iR April
g incident

Jan Feb Mar Apr May Jun Jul Aug Sep Oct

-+ Inserting Jobs

Further optimization of the Job Splitting algorithms

e In addition to the general improvement of the Job Optimizer, specific tuning of

the job splitting algorithms was done
o Part of the improvements are common for all jobs
o Most complex case is splitting by data locality
m Job attributes are added to match the jobs only with sites holding the dataset
o This method involves multiple interactions with the file catalogue
m Data lookup is expensive
m Furthermore, some jobs end up with very few files to process
e Several jobs can be merged together to improve efficiency and reduce splitting

Job splitting by data locality

e Data lookup for physical location is a costly operation
o Especially true for larger collections of above 1000 data files Lonical Fle Naimo

o All other splitting strategies require a single DB lookup
m Splitting by data locality requires up to 3 DB lookups

e Introducing a partitioned DB, which holds the locality information

o This is advantageous for faster lookups and faster indexing f . \
e Take advantage of partitioned DB to further improve data
collection lookup Split by
1. Divide the data collection by partition l operation
2. Do a bulk lookup query for each partition table
- /

Lookup required to find physical
storage of a data file

Lookup time as function of collection size

e With the old system, the time
for data lookup increases
exponentially with the size of

data collection
o Bulk data lookup time is
significantly reduced and is
essentially flat, irrespective of the
data set size
— Average individual lookup

e Time in seconds for the = Soreoretoltofon

average sized data collection
o Single lookup: 7,35s
o Vector lookup: 0,49s
o Improvement of x15 for this
case, significantly larger for Number of files

Time to lookup files in a collection

©
o

o]
o

~
o

[e2}
o

a
o

—Individual lookup

B
o

—Vector lookup

Time in seconds

N w
o o

=
o

il

0 ™M o 0
= o © N
< YT T 0 ©

236
260
291
300
373
378
384
390
400
410
415
978
1616
2419
3126
3808
5332
7099
10668
13146
24308

large datasets.

Job splitting based on data locality

Distribution of group size of input files

e Data is grouped based physical locations
o ALICE files typically have two replicas
o Data required by a split job must be located on a
given site for the job to be matched

e However an issue becomes apparent...
o The number of files in a data group is a function
of the size of the site storage element
o Data group sizes can differ by hundreds, even
thousands of files

Number of groups

5
1 6 11 16 21 26 31 36 41 46 51 57 62 67 76 81 87 94 101110 116 123 128 135 142 149 157 162 169 177 187 196 204 225 262 ...
Number of files in a group

Merging of data locality groups

e Idea is to merge smaller data groups to create
more balanced subjobs

©)

(@)

Find all small data groups

Merge data groups based on one shared data locality
and size

If no shared data locality base merge on distance
between data localities

m Another service keeps the distances up to date

e Caveat: Files are not always available locally
on site after merging

/

-

)

[]
[]

Small data
groups

/

Larger data
__ groups

Merge

4

-

o

—]

Small data
groups

)

J

4 N

Larger data
_ groups)

Untouched

10

Results of merging subjobs

How often a certain group size appears before and after merging of file groups

e More balanced data groups
Percentage of data groups
needed to merge on average:
11.87%

120

(%]
a
e Remote download of files does Su | §
. . . G
not increase significantly 5 | m Groupsbetore mrging
e 60 u Groups after mergning
o Therefore no added burden 2
40 % 3
on network r
20
e 0 AN A
Site Job eff. A" files Local files Remote flles 1 2 383 4 5 6 7 8 9 10 11 12 .13 1.4 15 16 17 18 19 20 21 22 23 24 25
= Number of files in a group
155941 (96.89%)
20.87 MB/s
TOTAL 160946 files 307 TB
3 .50 18.1 MB
2828 obs 315.9 T{Bs 5005 (3.11%)

3.262 MB/s
8.941 TB

11

New Job Optimizer advantages

e With all functionality improvements introduced on the past slides, the

operation of job insertion is done in a single DB transaction
o Inserting does not require a lock blocking rows or table for other connections
o However, to keep DB consistency a single write lock on a row is required

e Preprocess queries towards database before transaction to shorten
connection usage
e Query failure related to locking of tables have to be handled separately

with a retry

12

Batch Insert

e Large DB transactions for thousand of subjobs are slow if done in series

e To avoid this issue, the insertion is done in batches
o Results in a significant performance boost
o Drawback - batch is emptied both in case of success or failure
m Failure related to table locking will trigger the creation of the batches again
m Rare enough occurrence to negate the performance gain
o Improvements only seen if number of subjobs are in the thousands

13

Result of batch insert

e Tangible difference in

performance on large jobs
o Improvement by about 5% for
large job inserts

e Several seconds saved on
shared connection usage

e Large portion of time is
preprocessing job parameters

240
230
220
210
200
190
180

» 170
< 160
8 150
D 140
< 130
"o 120
£ 110
i= 100
2
80
70
60
50
40
30

Time to insert all subjobs

223
21
173
156
151
140|
121 M Batch insert
= 108 m Single insert
103
94 95
74
65
54
i i

11173 12394 16617 23975 25440 27147 35270 38723 54286
Number of jobs inserted

14

Summary and outlook

e Horizontally scalable Job Optimizer implementation solved the workload processing
backlog issue in the ALICE job management system

e Large performance improvements by change of DB query methods and structure
o Vector operations for file replica lookups
o Less connection usage and as little locking as possible
m This improves uptime for database connection for other services of JAIIEn
e Significant further improvement can be achieved in the warehousing of split jobs
o Every split job JDL is currently saved in its entirety, although most of the information is repeating and

redundant
o We are working on storing only a delta of the JDL containing the unique fields with respect to the

original job JDL
m Advantage - Will save more than 80% of the DB space currently used
m Disadvantage - Requires more SQL queries
m We are looking for the best compromise of the two

15

