
Deployment of inference as a service
at the US CMS Tier-2 data centers

Computing Demands Architecture at Purdue T2

Inference as a Service

• Large computing demands for HL-LHC, but CPU performance increases 
expected to be limited [1]

Coprocessors

Scaling and Load Balancing
• Recent performance improvements in coprocessors rather than CPUs
• Tradeoffs between flexibility and efficiency

• Heterogeneous computing: make best use of each processor type 

• Server discovery through official site configuration
• Prevent connections to saturated servers based on queue latency
• Load balancing via Envoy Proxy
• Autoscaling via KEDA (Kubernetes Event-Driven Autoscaling)
• Configuration bundled into Helm chart to deploy at other T2 sites

Run 3: Transformers
• CMS Run 3 miniAOD processing now 

includes Particle Transformer (ParT) [4], 
successor to ParticleNet

• Factor 10 speedup demonstrates 
advantages of batching
oDynamic batching (combining requests 

from different threads/jobs) only 
possible via SONIC/Triton!

• Overall miniAOD workflow speedup: 
33% w/ ParT on GPU through SONIC

• SONIC: Services for Optimized Network Inference on Coprocessors [2]
oDesign pattern for inference as a service in experiment software

• Build on industry technologies: gRPC,
Nvidia Triton inference server

• Advantages:
o Isolation: factorize ML frameworks

out of experiment software
o Simplicity: client code only handles

input/output conversions
oFlexibility: CPU-GPU ratios can be

adjusted dynamically
oEfficiency: optimize CPU-GPU ratios to

ensure full usage (minimizes cost)
oPortability: use CPU, GPU, FPGA, etc.

with no client-side code changes
oAccessibility: use remote coprocessors

if none available locally

AMD GPUs

Purdue T2 Kubernetes cluster (Geddes)

Client job

SITECONF

Server URL

Envoy Proxy

Prometheus

Saturation metric
1 when saturated, 0 otherwise

Received inference request

Triton
Received request for list of models

GPU

Triton

GPU

metric > 0?

Return error

Retrieve & 
return list of 

models
Use 

fallback 
server

Request list of models

yes no
Error / missing models?

Use 
remote 
server

yes no Load 
Balancer

• First demonstration of non-Nvidia GPU 
usage, using important CMS ParticleNet [3] 
algorithm

• AMD MI100 has superior throughput to 
several existing GPU types (even A100s at 
smaller batch sizes)

• AMD GPUs can be accessed through the 
Triton server using a custom backend: 
dedicated instructions loaded by server via 
Python (or compiled into shared library)

• Production-like “continuous flow” of jobs 
(via CRAB): 1000 jobs in batches of 50, 
every 10 min

• New load balancer distributes load per 
request: consistent and uniform load across 
GPUs for hours

• 45% speedup in Run 2 miniAOD workflow 
when offloading ML inference to GPUs vs. 
falling back to CPU-only processing
oDepends on CPU properties

References
[1] CMS-NOTE-2022-008
[2] CSBS 8 (2024) 17

[3] PRD 101 (2020) 056019
[4] PMLR 162 (2022) 18281

Burt Holzman, Kevin Pedro, Nhan Tran (FNAL); Philip Coleman Harris, Noah Paladino (MIT); Ethan Colbert, 
Dmitry Kondratyev, Miaoyuan Liu, Garyfallia Paspalaki, Stefan Piperov, Jan-Frederik Schulte, Yao Yao

(Purdue); Javier Duarte (UCSD); Philip Chang, Kelci Ann Mohrman (UF); Yongbin Feng (TTU)
on behalf of the CMS Collaboration

FERMILAB-POSTER-24-0301-CMS-CSAID-PPD This document was prepared by the CMS Collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of 
Science, Office of High Energy Physics HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359.

https://cds.cern.ch/record/2815292
https://doi.org/10.1007/s41781-024-00124-1
https://doi.org/10.1103/PhysRevD.101.056019
https://proceedings.mlr.press/v162/qu22b.html

	Slide Number 1

