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What is CernVM-FS?

e Read-only, on-demand, distributed file system
e Distributes software independent of the underlying platform
e Uses HTTP for web transfer of files
e When software is locally cached it can be as fast as local installation
e All software and data reachable via /cvmfs/<repo>/...

For 10+ years it belongs to the critical infrastructure to run HEP computing
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CVMEFS is used on...

An incomplete selection...

o All WLCG grid sites
e HPC sites in Europe

e Alps, Switzerland (6)
Karolina, Czechia (135)
LUMI, Finland (5)
Vega, Solvenia (226)
e MareNostrum5 (8), Spain

e Digital Research Alliance of Canada

(Top500, June24)

e HPC sites in USA

ALCF Polaris (30)
ALCF Theta (134)
NERSC Perlmutter (14)
NERSC Cori (74)
NERSC Edison

OLCF Summit (9)

PSC Bridges-2

Purdue Anvil

SDSC Expanse (403)
TACC Frontera (33)
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CVMFS is used on... Il

Typical CPU Specs of current HPC nodes Maximum Core Count per Node

out of 34 ATLAS sites
e AMD EPYC 7h12: 64 cores, 128 threads

e AMD EPYC 7763: 64 cores, 128 threads
e AMD EPYC 7742: 64 cores, 128 threads
o AMD EPYC 7452: 32 cores, 64 threads

=116
e ARM AG64FX: 48 cores, 48 threads m<=64
o Intel Xeon-SC 8628: 24 cores, 48 threads =128
m <=256
e Intel Xeon Platinum 8480: 56 cores, <=512

112 threads
e Intel Xeon 9480: 56 cores, 112 threads
e Intel Xeon 8460Y: 40 cores, 80 threads
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Known issues on large many-core CVMFS clients

1. Crashing programs because out-of-file-descriptors
e https://github.com/cvmfs/cvmfs/issues/3067

2. Bottleneck download: Decompression of downloaded chunks is sequential
e https://indico.cern.ch/event/1180962/contributions/4960898
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Benchmark setup

e Hardware
e CVMFS client: 2x AMD EPYC 7702 64-Core (=256 virtual cores), 1 TB RAM,
2 TB NVMes
e Private proxy: 1x Intel i7-7820X 8-Core, 64 GB RAM, 1 TB HDDs, 9 Gbps Ethernet,
0.3 ms latency
e Measurement modes
e Cold cache: data only on proxy
e \Warm cache: data on local disk
e Hot cache: data on local disk and kernel cache
e Relationship: 1 (virtual) thread = 1 process
e 1 thread = 1 process of command
e 256 threads = 256 processes of command

e 10 repetitions of each mode
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Benchmark setup Il

e Commands
e Tensorflow (TF): Import numpy and tensorflow in python (LCG_103)
e Each thread runs the same command
e ROOT: Create 1D Histogram of 100 random values (LCG_103)
e Each thread runs the same command
e Different ROOT versions: 71 combinations of 12 ROOT (sub)versions and different
compilers (dbg, opt, gcc, clang, ..) for EL9
e Version selection: thread_id % 71
e Random walk LCG: Read files given by file lists (LCG_106)
e Each thread gets a different file lists

e Each file lists should take around 40 sec runtime for single process, cold cache
performance

LCG = Software stack: Over 800 external packages as well as HEP specific tools and generators.
See https://ep-dep-sft.web.cern.ch/document/lcg-releases
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Known issues on large many-core CVMFS clients

1. Crashing programs because out-of-file-descriptors

e https://github.com/cvmfs/cvmfs/issues/3067
e Solution available since 2.11

2. Bottleneck download: Decompression of downloaded chunks is sequential
e https://indico.cern.ch/event/1180962/contributions/4960898
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Reference-counted cache manager

e Default cache manager

e Each open() creates a new file descriptor even if the file is already used by some
other process using CVMFS
e Problem: On large many core machines it is easy to run out of file descriptors

e Reference-counted cache manager

e CVMFS deduplicates file descriptors when file is opened many times
e Only one file descriptor per file
e Available from version 2.11 on

e Side note: Default fd limit on EL9 is only 1024

L. Promberger | CERN EP-SFT | CHEP 2024 | Performance on large, many core CVMFS clients 9



Reference-counted cache manager Il - Comparison: Cache managers

Both cache managers, default and refcounted, have the same performance.

Default cache mgr: Even with max fd limit, TF only can run on 141 of 256 threads %
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Reference-counted cache manager |1l - Comparison: Fd limit

A lower fd limit seems to slightly decrease the overall CVMFS performance
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Reference-counted cache manager Il - Comparison: Threads
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Known issues on large many-core CVMFS clients

1. Crashing programs because out-of-file-descriptors

e https://github.com/cvmfs/cvmfs/issues/3067
e Solution available since 2.11

2. Bottleneck download: Decompression of downloaded chunks is sequential

e https://indico.cern.ch/event/1180962/contributions/4960898
e Currently only available as PR
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DownloadManager: Old implementation

DownloadManager

‘ ‘ DownloadManager ‘
Fuse Threads DownloadManager Thread CURL Pool
(single thread)
’—‘ asynchronous
L e Fetch()

y HTTP requests

m finalizeDownload() | Laslt data
verifyDownload()
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DownloadManager: New implementation

DownloadManager

DownloadManager ‘
DownloadManager ‘ Thread ‘ CURL Pool

(single thread)
Enqueue

asynchronous
For ele in DoneQueue { HTTP requests
finishVerify :

while (downloading) {

ele = DataTube.Pop()
switch(ele) {

stop: downloading= false

repeat?

endOfData: CallbackCURLData()
Verify() |  Newdata :
sendChoice() copyDataToBuffer()
data: send(data) i
decompressAndWrite() H
} 5
} B | VS
o data| poll(CURL ‘ﬂ
etch() returns addTo(DoneQueue) chunk | event) \w

| send(endOfData)
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DownloadManager: New implementation

DownloadManager

DownloadManager
Thread CURL Pool

DownloadManager

(single thread)

Enqueue

asynchronous
Fetc|
- I Zrequests

while (downloading) {
ele = DataTube.Pop()
switch(ele) {
stop: downloading= false

Access to object request thatis notin cache
1. New download request started

dOfData:

enverifya()a - CURL is used to download it chunk-
sendChoice() wise and asynchronously

data:
decompressAndWrite() |

}

}

Fetch() returns Poel‘llgf“l:)RL
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DownloadManager: New implementation

DownloadManager

DownloadManager
DownloadManager | Thread CURL Pool
‘ (single thread)
| Enqueue
asynchronous
HTTP requests
5 . 2. CURL chunk-wise returns the object
while (downloading) { - By default, CVMFS stores data |
ele. = DataTube.Pop() compressed = decompress it
switch(ele) {
stop: downloading= false
endObata; CallbackCURLData()
Verify() New data
sendChoice() copyDataToBuffer() chunk
data: | send(data)
decompressAndWrite() ‘
}
| | N
Fetch() returns ‘ sellfeuiL
|

event) ’\ll
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DownloadManager: New implementation

DownloadManager

DownloadManager ‘
DownloadManager Thread
‘ (single thread)
| Enqueue

3. CURL is done downloading

while (downloading) { - Inform FUSE-Thread
ele = DataTube.Pop()

switch(ele) {

‘ - Remember that this object is ‘
stop: downloading= false

done downloading

CURL Pool

asynchronous
HTTP requests

endOfData: CallbackCURLData()
Verify() _ New data
sendChoice() copyDataToBuffer() chunk
data: send(data)
decompressAndWrite()
}

}
addTo(DoneQueue)
|

Fetch() returns
send(endOfData)

ch%nk
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DownloadManager: New implementation

DownloadManager

DownloadManager ‘
Thread CURL Pool

(single thread)
Enqueue

DownloadManager

while (downloading) {
ele = DataTube.Pop()
switch(ele) {
stop: downloading= false
endOfData:
Verify()
sendChoice()
data: ‘

. asynchronous
For ele in DoneQueue { HTTP requests
finishVerify

repeat?

done?

}

4. Verify if download was a success

decompressAndwite(} - Inform of decision

}
| DN
Fetch() returns PC:‘l’E;l:)RL W

‘ |
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DownloadManager: New implementation

DownloadManager

DownloadManager ‘
Thread CURL Pool
‘ (single thread)

DownloadManager

Enqueue
asynchronous
For ele in DoneQueue { " HTTP requests
while (downloading) { i A2l
repeat?
ele = DataTube.Pop()
switch(ele) {
stop: downloading= false
endOfData:
Verify()
sendChoice()
data:
decompressAndWrite() ‘
} 5a. If successful download
} - Inform FUSE thread to stop A
Sb. Else retry download poll(CURL m

Fetch() returns

| . event) W
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CVMFS Version (refcounted)

CVMFS Version (refcounted)

—— hot cache

warm cache

—— cold cache

warm cache hot cache

—— cold cache

128 Threads

1

Random walk

256 threads
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Parallel Decompression: All processes access same data
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Parallel Decompression: All processes access different data
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Parallel Decompression: All processes access different data - No LargeQueue
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—— cold cache
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Random walk - 256 threads
Parallel Decomp up to 25% faster
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Parallel Decompress.: 71 different combos of 12 ROOT versions x n compilers
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Conclusion

Improved performance of the CVMFS client for large many-core machines

e Reference-counted cache manager
e Allows to use the full performance of large many-core machines
e Has a very similar performance to the default cache manager
e From version 2.11 on available — Use it! It only has advantages

e Parallel decompression of downloaded chunks

e Warm and hot cache unaffected by those changes

e Characteristics of access patterns will help to find the most efficient configuration
e Up to 30 - 40% faster for highly parallel file accesses on large many-core machines
e Do not use parallel decompression if the access pattern is: sequential file access

e If uncertain about parallelism in download requests, use

parallel decompression with an empty queue

e Max 10% slower (1 thread, sequential file access) but up to 30% faster
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Add to your client config

Location of your CVMFS client config files: /etc/cvmfs/
Read more here: https://cvmfs.readthedocs.io/en/stable/cpt-configure.html

e Reference-counted cache manager

e Minimum client version: 2.11
CVMFS_CACHE_REFCOUNT=yes

e Parallel decompression of downloaded chunks: Empty Queue
e Still 2 PRI, but syntax will be similar to:
CVMFS_PARALLEL_DOWNLOAD_MIN_BUFFERS=0
CVMFS_PARALLEL_DOWNLOAD_MAX_BUFFERS=0
CVMFS_PARALLEL _DOWNLOAD_INFLIGHT _BUFFERS=1
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Questions?

Find us at CHEP or write us!

Questions: https://cernvm-forum.cern.ch

Feature requests and bug reports: https://github.com/cvmfs/cvmfs/issues/

E-mail: laura.promberger@cern.ch
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