CVMFS: Pushing performance
on highly parallel, many-core clients

CHEP 2024, Krakéw, Poland

Laura Promberger!, Valentin V&lkl!, Jakob Blomer!, Matt Harvey?, and
Reza Naghibi?
October 24, 2024

LCERN, EP-SFT, Switzerland
2Jump Trading

What is CernVM-FS?

e Read-only, on-demand, distributed file system
e Distributes software independent of the underlying platform
e Uses HTTP for web transfer of files
e When software is locally cached it can be as fast as local installation
e All software and data reachable via /cvmfs/<repo>/...

For 10+ years it belongs to the critical infrastructure to run HEP computing

L. Promberger | CERN EP-SFT | CHEP 2024 | Performance on large, many core CVMFS clients 2

CVMEFS is used on...

An incomplete selection...

o All WLCG grid sites
e HPC sites in Europe

e Alps, Switzerland (6)
Karolina, Czechia (135)
LUMI, Finland (5)
Vega, Solvenia (226)
e MareNostrum5 (8), Spain

e Digital Research Alliance of Canada

(Top500, June24)

e HPC sites in USA

ALCF Polaris (30)
ALCF Theta (134)
NERSC Perlmutter (14)
NERSC Cori (74)
NERSC Edison

OLCF Summit (9)

PSC Bridges-2

Purdue Anvil

SDSC Expanse (403)
TACC Frontera (33)

L. Promberger | CERN EP-SFT | CHEP 2024 | Performance on large, many core CVMFS clients 3

CVMFS is used on... Il

Typical CPU Specs of current HPC nodes Maximum Core Count per Node

out of 34 ATLAS sites
e AMD EPYC 7h12: 64 cores, 128 threads

e AMD EPYC 7763: 64 cores, 128 threads
e AMD EPYC 7742: 64 cores, 128 threads
o AMD EPYC 7452: 32 cores, 64 threads

=116
e ARM AG64FX: 48 cores, 48 threads m<=64
o Intel Xeon-SC 8628: 24 cores, 48 threads =128
m <=256
e Intel Xeon Platinum 8480: 56 cores, <=512

112 threads
e Intel Xeon 9480: 56 cores, 112 threads
e Intel Xeon 8460Y: 40 cores, 80 threads

L. Promberger | CERN EP-SFT | CHEP 2024 | Performance on large, many core CVMFS clients 4

Known issues on large many-core CVMFS clients

1. Crashing programs because out-of-file-descriptors
e https://github.com/cvmfs/cvmfs/issues/3067

2. Bottleneck download: Decompression of downloaded chunks is sequential
e https://indico.cern.ch/event/1180962/contributions/4960898

L. Promberger | CERN EP-SFT | CHEP 2024 | Performance on large, many core CVMFS clients 5

https://github.com/cvmfs/cvmfs/issues/3067
https://indico.cern.ch/event/1180962/contributions/4960898

Benchmark setup

e Hardware
e CVMFS client: 2x AMD EPYC 7702 64-Core (=256 virtual cores), 1 TB RAM,
2 TB NVMes
e Private proxy: 1x Intel i7-7820X 8-Core, 64 GB RAM, 1 TB HDDs, 9 Gbps Ethernet,
0.3 ms latency
e Measurement modes
e Cold cache: data only on proxy
e \Warm cache: data on local disk
e Hot cache: data on local disk and kernel cache
e Relationship: 1 (virtual) thread = 1 process
e 1 thread = 1 process of command
e 256 threads = 256 processes of command

e 10 repetitions of each mode

L. Promberger | CERN EP-SFT | CHEP 2024 | Performance on large, many core CVMFS clients 6

Benchmark setup Il

e Commands
e Tensorflow (TF): Import numpy and tensorflow in python (LCG_103)
e Each thread runs the same command
e ROOT: Create 1D Histogram of 100 random values (LCG_103)
e Each thread runs the same command
e Different ROOT versions: 71 combinations of 12 ROOT (sub)versions and different
compilers (dbg, opt, gcc, clang, ..) for EL9
e Version selection: thread_id % 71
e Random walk LCG: Read files given by file lists (LCG_106)
e Each thread gets a different file lists

e Each file lists should take around 40 sec runtime for single process, cold cache
performance

LCG = Software stack: Over 800 external packages as well as HEP specific tools and generators.
See https://ep-dep-sft.web.cern.ch/document/lcg-releases

L. Promberger | CERN EP-SFT | CHEP 2024 | Performance on large, many core CVMFS clients 7

https://ep-dep-sft.web.cern.ch/document/lcg-releases

Known issues on large many-core CVMFS clients

1. Crashing programs because out-of-file-descriptors

e https://github.com/cvmfs/cvmfs/issues/3067
e Solution available since 2.11

2. Bottleneck download: Decompression of downloaded chunks is sequential
e https://indico.cern.ch/event/1180962/contributions/4960898

L. Promberger | CERN EP-SFT | CHEP 2024 | Performance on large, many core CVMFS clients 8

https://github.com/cvmfs/cvmfs/issues/3067
https://indico.cern.ch/event/1180962/contributions/4960898

Reference-counted cache manager

e Default cache manager

e Each open() creates a new file descriptor even if the file is already used by some
other process using CVMFS
e Problem: On large many core machines it is easy to run out of file descriptors

e Reference-counted cache manager

e CVMFS deduplicates file descriptors when file is opened many times
e Only one file descriptor per file
e Available from version 2.11 on

e Side note: Default fd limit on EL9 is only 1024

L. Promberger | CERN EP-SFT | CHEP 2024 | Performance on large, many core CVMFS clients 9

Reference-counted cache manager Il - Comparison: Cache managers

Both cache managers, default and refcounted, have the same performance.

Default cache mgr: Even with max fd limit, TF only can run on 141 of 256 threads %

25
— i
20 ¢ '
G
[
£15
£
=
£10
5 —_— — J— ———
0 & > & > & >
N < N < N <
& 5 & & & &
Qq/ &c Qw &Q Qq/ ‘90
«& IS IS
&

L. Promberger | CERN EP-SFT | CHEP 2024 | Performance on large

< Sy
CVMFS Version 2.11.3 - Different Cache Managers

—— cold cache —— warm cache ~—— hot cache

TF - 1 thread - max fd limit

50

N w N
o (=] o

Real Time (s)

i
o

o

X
N
3

QQ/

X
N
&

o

X

g > g

s & N
S Q S
b
<

&
S
& Q &
< s
CVMFS Version 2.11.3 - Different Cache Managers

—— cold cache ~ —— warm cache =~ —— hot cache

TF - 141 threads - max fd limit

, many core CVMFS clients

10

Reference-counted cache manager |1l - Comparison: Fd limit

A lower fd limit seems to slightly decrease the overall CVMFS performance

50
25
——— L 40| e e
_.20 - :
C) cl
.E 15 E 30
E E
© ©
210 820 . .
5 R — —— 10
e s & s & s s s & s & s
& S & S & S & S & S & S
Q@ Q@ & @ Q@ Q@
File descriptor limit (2.11.3 - refcounted) File descriptor limit (2.11.3 - refcounted)
—— cold cache —— warm cache —— hot cache —— cold cache —— warm cache —— hot cache
TF - 1 thread - refcounted TF - 141 threads - refcounted

L. Promberger | CERN EP-SFT | CHEP 2024 | Performance on large, many core CVMFS clients 11

Reference-counted cache manager Il - Comparison: Threads

o N
o o o

1
I

=
o

Real Time (s)
w sy w
o o

The refcounted cache manager allows us to
use the full machine of 256 threads! v

o

max - 141
5'000 - 141
5'000 - 256
max - 141
5'000 - 141
5'000 - 256
max - 141
5'000 - 141

© © © © ©
File descriptor limit and threads (2.11.3 - refcounted)

—— cold cache —— warmcache —— hot cache

TF - different threads - refcounted

65000 - 256

Compared to 141 threads, 256 threads are
on average 20-30% slower but 81% more

work is performed

L. Promberger | CERN EP-SFT | CHEP 2024 | Performance on large, many core CVMFS clients

12

Known issues on large many-core CVMFS clients

1. Crashing programs because out-of-file-descriptors

e https://github.com/cvmfs/cvmfs/issues/3067
e Solution available since 2.11

2. Bottleneck download: Decompression of downloaded chunks is sequential

e https://indico.cern.ch/event/1180962/contributions/4960898
e Currently only available as PR

L. Promberger | CERN EP-SFT | CHEP 2024 | Performance on large, many core CVMFS clients 13

https://github.com/cvmfs/cvmfs/issues/3067
https://indico.cern.ch/event/1180962/contributions/4960898

CVMFS Client

CVMFS Client e ey

‘/\

file descriptor —— _] 9

open(/Changelog)

@ L~ HITPGET
|h‘ CernVM-FS ‘

!

T é\ DownloadManage
SHA-1

—
. 7=
| glibe | ‘ libfuse | ~— 50!—‘{2%/
1t
| T user space
e system call —ee—/dev/fuse
l, | kernel space

Virtual File System

inode cache
dentry cache

Buffer Cache

FUSE

https://cvmfs.readthedocs.io/en/stable/_images/fuse.svg

(14 Sept 2024, modified)

L. Promberger | CERN EP-SFT | CHEP 2024 | Performance on large, many core CVMFS clients

14

DownloadManager: Old implementation

DownloadManager

‘ ‘ DownloadManager ‘
Fuse Threads DownloadManager Thread CURL Pool
(single thread)
’—‘ asynchronous
L e Fetch()

y HTTP requests

m finalizeDownload() | Laslt data
verifyDownload()

L. Promberger | CERN EP-SFT | CHEP 2024 | Performance on large, many core CVMFS clients 15

CallbackCURLData()
1. decompress()
2. writeToResultBuffer()

_ Newdata

~lchunk v
poll(CURL m

event) w

P e e e

I
1
1
1
1
1
1
v

DownloadManager: New implementation

DownloadManager

DownloadManager ‘
DownloadManager ‘ Thread ‘ CURL Pool

(single thread)
Enqueue

asynchronous
For ele in DoneQueue { HTTP requests
finishVerify :

while (downloading) {

ele = DataTube.Pop()
switch(ele) {

stop: downloading= false

repeat?

endOfData: CallbackCURLData()
Verify() | Newdata :
sendChoice() copyDataToBuffer()
data: send(data) i
decompressAndWrite() H
} 5
} B | VS
o data| poll(CURL ‘ﬂ
etch() returns addTo(DoneQueue) chunk | event) \w

| send(endOfData)

L. Promberger | CERN EP-SFT | CHEP 2024 | Performance on large, many core CVMFS clients 16

DownloadManager: New implementation

DownloadManager

DownloadManager
Thread CURL Pool

DownloadManager

(single thread)

Enqueue

asynchronous
Fetc|
- I Zrequests

while (downloading) {
ele = DataTube.Pop()
switch(ele) {
stop: downloading= false

Access to object request thatis notin cache
1. New download request started

dOfData:

enverifya()a - CURL is used to download it chunk-
sendChoice() wise and asynchronously

data:
decompressAndWrite() |

}

}

Fetch() returns Poel‘llgf“l:)RL

L. Promberger | CERN EP-SFT | CHEP 2024 | Performance on large, many core CVMFS clients 17

DownloadManager: New implementation

DownloadManager

DownloadManager
DownloadManager | Thread CURL Pool
‘ (single thread)
| Enqueue
asynchronous
HTTP requests
5 . 2. CURL chunk-wise returns the object
while (downloading) { - By default, CVMFS stores data |
ele. = DataTube.Pop() compressed = decompress it
switch(ele) {
stop: downloading= false
endObata; CallbackCURLData()
Verify() New data
sendChoice() copyDataToBuffer() chunk
data: | send(data)
decompressAndWrite() ‘
}
| | N
Fetch() returns ‘ sellfeuiL
|

event) ’\ll

L. Promberger | CERN EP-SFT | CHEP 2024 | Performance on large, many core CVMFS clients 18

DownloadManager: New implementation

DownloadManager

DownloadManager ‘
DownloadManager Thread
‘ (single thread)
| Enqueue

3. CURL is done downloading

while (downloading) { - Inform FUSE-Thread
ele = DataTube.Pop()

switch(ele) {

‘ - Remember that this object is ‘
stop: downloading= false

done downloading

CURL Pool

asynchronous
HTTP requests

endOfData: CallbackCURLData()
Verify() _ New data
sendChoice() copyDataToBuffer() chunk
data: send(data)
decompressAndWrite()
}

}
addTo(DoneQueue)
|

Fetch() returns
send(endOfData)

ch%nk
L. Promberger | CERN EP-SFT | CHEP 2024 | Performance on large, many core CVMFS clients

L_as*giata poll(CURL m

event) w

19

DownloadManager: New implementation

DownloadManager

DownloadManager ‘
Thread CURL Pool

(single thread)
Enqueue

DownloadManager

while (downloading) {
ele = DataTube.Pop()
switch(ele) {
stop: downloading= false
endOfData:
Verify()
sendChoice()
data: ‘

. asynchronous
For ele in DoneQueue { HTTP requests
finishVerify

repeat?

done?

}

4. Verify if download was a success

decompressAndwite(} - Inform of decision

}
| DN
Fetch() returns PC:‘l’E;l:)RL W

‘ |

L. Promberger | CERN EP-SFT | CHEP 2024 | Performance on large, many core CVMFS clients 20

DownloadManager: New implementation

DownloadManager

DownloadManager ‘
Thread CURL Pool
‘ (single thread)

DownloadManager

Enqueue
asynchronous
For ele in DoneQueue { " HTTP requests
while (downloading) { i A2l
repeat?
ele = DataTube.Pop()
switch(ele) {
stop: downloading= false
endOfData:
Verify()
sendChoice()
data:
decompressAndWrite() ‘
} 5a. If successful download
} - Inform FUSE thread to stop A
Sb. Else retry download poll(CURL m

Fetch() returns

| . event) W

L. Promberger | CERN EP-SFT | CHEP 2024 | Performance on large, many core CVMFS clients 21

<
Q
e
3
&=
(v}
c
=]
()]
=
Q
v}
Q
=
~
[}
2
©
c
(v}
)
(=)
I
c
2
(2]
(2]
Q
=
Qo
€
(=]
Q
()
()]
9
©
-
C
(a8

n m
() swiL |eay

- -+ |®N3NnYdakue - 19]je1ey
. -] [®Nondjlews - 19]1e1ey
_ -] m:w:OEaEm - 19]]eeyq
. -l |nanpoy - I13]1e1ey
. -] |E€TTZ
R - m:w:OwEm._ - 191esey
R - m:m:O:mEm " I8ljeleq
R - w:w:ObQEm - I9)jesey
. - ananpoy - I91je1ey
R - €11z
- - w:w:meLm._ - 1911esey
_ - m:w:O:uEm - I9]jedey
_ — eN3nPA1dwy - 19]jesey
p— |nanpoy - I9]1e1eyq
I €11z
B Bes C
(s) awi |edy
— eNdnYabie - 19]1esey
{— enanYjjews - 19]]e1ey
j— m:m:ObQEm - 19]1eey
f— |nanpoy - 19]|eleyq
- €11z
_ m:m:Ow@mJ_ - 191)esey
e w:w:O:wEw " I8]jeleq
_ m:m:ObQEm - I9)jeley
_ |nanpoy - I91je1ey
— €11z
. w:m:meLm,_ - 1911esey
. endnYjews - 19]1e1ey
. eN3nPA1dwy - I9]jesey
- snanpoy - I31je1ey
I €11z
W =) M.u 2 N E

CVMFS Version (refcounted)

CVMFS Version (refcounted)

—— hot cache

warm cache

—— cold cache

warm cache hot cache

—— cold cache

128 Threads

1

Random walk

256 threads
L. Promberger | CERN EP-SFT | CHEP 2024 | Performance on large, many core CVMFS clients

ROOT

22

Parallel Decompression: All processes access same data

30 70
25 60| = = . | [|
a @50
2 2
Fis F40
g0
10
20
5 10
0 0
”)
~ N @ @ o @ ~ @ @ @ @
~ A G el N 0 o8 of
N PN PN o N N N
&8 o8 oY £ &8 &L oY £
h CL L o N LE €L e
Q/@ 2 ~ Q/S 9 ~

CVMFS Version (refcounted)

—— cold cache

Tensorflow - 1 thread

L. Promberger | CERN EP-SFT | CHEP 2024 | Performance

CVMFS Version (refcounted)

—— cold cache

Tensorflow - 256 threads

on large, many core CVMFS clients

23

Parallel Decompression: All processes access different data

50 300
250
40
@ 5200
30 [}
£ []
= E150 i
© w
220 2100
10 50] 1 1] |
| | . . .
0 0 < u
B)
~ N] (] o ~ <2 o o o
N D > <P o N, o N D o P
v A A A O A N A
O 3 X SN IS o ICIY NN N
T L L Lo o oy e L8
s S NG & 2 NG
CVMFS Version (refcounted) CVMFS Version (refcounted)
—— cold cache —— cold cache
Random walk - 1 thread Random walk - 256 threads

L. Promberger | CERN EP-SFT | CHEP 2024 | Performance on large, many core CVMFS clients 24

Parallel Decompression: All processes access different data - No LargeQueue

50 80
20 i i I i
60
z G
I 3 R T
= =
820 3
Bl Bl
2 3
10
t
0 0
”)
N N @ @ @ ~N N @ @ @
et Ny > g X v Ny o8 o9
o N > S NI >
oS X IO Lo FGEY ISS
°F &g L hi &g L
§ i & b

CVMFS Version (refcounted)

—— cold cache

Random walk - 1 thread
Parallel Decomp up to 29% slower

CVMFS Version (refcounted)

—— cold cache

Random walk - 256 threads
Parallel Decomp up to 25% faster

L. Promberger | CERN EP-SFT | CHEP 2024 | Performance on large, many core CVMFS clients

25

Parallel Decompress.: 71 different combos of 12 ROOT versions x n compilers

w B
o (=

N
(=

Real Time (s)

-
(=]

0
@ o o o
ey o8 od o8
N RN N N
5O > O oS oS
N G O $ O
S g L Lo
T L RS RSN
. IS & G
& .

CVMFS Version (refcounted)

—— cold cache

Different ROOT versions - 1 thread
Parallel Decomp can be same speed

800
. I
5600
3
£
=
Z 400
T
E :]
200 I
0 1
o5 3 8 K4
A F oF N
&S ok o &
N L e Lo
& i v

CVMFS Version (refcounted)

—— cold cache

Different ROOT versions - 256 threads
Parallel Decomp 30 - 40% faster

L. Promberger | CERN EP-SFT | CHEP 2024 | Performance on large, many core CVMFS clients

26

Conclusion

Improved performance of the CVMFS client for large many-core machines

e Reference-counted cache manager
e Allows to use the full performance of large many-core machines
e Has a very similar performance to the default cache manager
e From version 2.11 on available — Use it! It only has advantages

e Parallel decompression of downloaded chunks

e Warm and hot cache unaffected by those changes

e Characteristics of access patterns will help to find the most efficient configuration
e Up to 30 - 40% faster for highly parallel file accesses on large many-core machines
e Do not use parallel decompression if the access pattern is: sequential file access

e If uncertain about parallelism in download requests, use

parallel decompression with an empty queue

e Max 10% slower (1 thread, sequential file access) but up to 30% faster

L. Promberger | CERN EP-SFT | CHEP 2024 | Performance on large, many core CVMFS clients 27

Add to your client config

Location of your CVMFS client config files: /etc/cvmfs/
Read more here: https://cvmfs.readthedocs.io/en/stable/cpt-configure.html

e Reference-counted cache manager

e Minimum client version: 2.11
CVMFS_CACHE_REFCOUNT=yes

e Parallel decompression of downloaded chunks: Empty Queue
e Still 2 PRI, but syntax will be similar to:
CVMFS_PARALLEL_DOWNLOAD_MIN_BUFFERS=0
CVMFS_PARALLEL_DOWNLOAD_MAX_BUFFERS=0
CVMFS_PARALLEL _DOWNLOAD_INFLIGHT _BUFFERS=1

L. Promberger | CERN EP-SFT | CHEP 2024 | Performance on large, many core CVMFS clients 28

https://cvmfs.readthedocs.io/en/stable/cpt-configure.html

Questions?

Find us at CHEP or write us!

Questions: https://cernvm-forum.cern.ch

Feature requests and bug reports: https://github.com/cvmfs/cvmfs/issues/

E-mail: laura.promberger@cern.ch

https://cernvm-forum.cern.ch
https://github.com/cvmfs/cvmfs/issues/

