
through
 CWL Integration

Computational Workflows automate
complex data processes but face
challenges like vendor lock-in and
poor portability.
The Common Workflow Language
(CWL) (Crusoe et al., 2022) provides
a standardized and vendor-neutral
approach to defining workflows.
CWL is widely adopted across
diverse fields, with a growing
number of workflow management
systems supporting it.

Reproducibility is fundamental to
scientific research, ensuring that
results can be independently
validated and generalized.
Computers enabled complex
calculations but also introduced
issues, often taken for granted (e.g.,
software and hardware variations).
A Nature survey (Baker, 2016) shows
a widespread reproducibility crisis
across scientific fields.
Inconsistencies in software
environments and computational
workflows are major contributors
(Antunes et al., 2024).

Open & Free
Community first

Interoperable

Portable

Vendor neutral

Reusable
Reproducible

Scalable

Large ecosystem

Dirac (Stagni et al., 2024) is a comprehensive
framework for managing large-scale scientific
workflows on distributed computing resources.
Originally developed by, and for, the LHCb
collaboration at CERN in 2000, now an experiment-
agnostic and open source community project
adopted across high-energy physics (HEP) and non-
HEP experiments.

Dirac is composed of interconnected systems that
manage different aspects of large-scale workflows.

The PS creates a production (workflow) and
multiple transformation (sub-workflow with
metadata and scheduling parameters) serving
as a template for jobs.
The TS submits jobs for transformations when
enough outputs from parent transformations,
retrieved via metadata-based input queries, are
available. New jobs are submitted to the WMS
with those files as inputs.
The WMS extracts necessary JDL attributes for
scheduling and executes the workflow on
remote resources using dirac-jobexec.

Dirac workflows rely on JDL (Dirac scheduling
parameters & sub-workflow metadata), XML (sub-
workflow) and Python (workflow) languages,
creating a fragmented system that lacks local
testability, and portability to other workflow
management systems.

Production System (PS)
Generate & Manage
connections between

Transformations

Transformation System
(TS)

Generate & Manage jobs for
a given transformation

P1

T1 T2 T3T4 T5

Workload Management
System (WMS)

Manage job scheduling and
resource allocation

J4J1 J2 J3

J5 J6

Step image-prod:
output_query_step1 = {"image_width": 7680}
prod_step1 = create_production_step(
 type="image-prod",
 output_query=outputquery
)
prod_step1.Body = description_prod
prod_client.addProductionStep(prod_step1)

Step image-merge:
output_query_step2 = {"image_width": 7680}
prod_step2 = create_production_step(
 type="image-merge",
 input_query=output_query_step1,
 output_query=output_query_step2,
)
prod_step2.Body = description_merge
prod_step2.ParentStep = prod_step1
prod_client.addProductionStep(prod_step2)

Description.xml (Transformation)

<Workflow>
 <Param name="precision"></Param>
 <StepDefinition>
 <ModuleInstance>
 <name>ImageProd</name>
 <type>ImageProd</type>
 </ModuleInstance>
 </StepDefinition>
</Workflow>

 TransformationID = 240415;
 JobID = 1234;
 JobName = image-prod-11104080;
 Executable = "dirac-jobexec";
 Args = "Description.xml -p
precision=0.05";
 Platform = "x86_64-el9";
 OutputData = "/mandelbrot/img/";
 Site = Resource1;

1. cwltool workflow.cwl inputs.yaml

cwlVersion: v1.2
class: Workflow

inputs: {precision: {type: float, default: 0.05}}
outputs: {merged-data: {type: File, outputSource: image-merge/result}
requirements: {ResourceRequirement: {coresMin: 4, ramMin: 2048}}

steps:
 image-prod:
 in: {precision: precision}
 out: [data]
 run:
 class: CommandLineTool
 inputs: {precision: {type: float, inputBinding: {prefix: --precision}}}
 outputs: {data: {type: File[], outputBinding: {glob: "data*.txt"}}}
 baseCommand: [run-mandelbrot]

 image-merge:
 in: {data: image-prod/data}
 out: [result]
 run:
 class: CommandLineTool
 inputs: {data: {type: File[]}}
 outputs: {result: {type: File, outputBinding: {glob: "data-merged.txt"}}}
 baseCommand: [merge-mandelbrot]

Handling CWL workflows within
Dirac

2.c. jobs <workflow>.cwl
inputs.yaml <description>.yaml

2.a. dirac submit production
workflow.cwl steps-metadata.yaml

CWL workflows can be tested locally
using community tools like cwltool
and then submitted to Dirac along
with Dirac-specific attributes (i.e.
target resources).
In the PS, each CWL step is treated
as a separate transformation, with
sub-workflows handled as
independent CWL workflows.
The TS still uses metadata-based
input queries to trigger job
submissions when there are enough
outputs from parent
transformations available.
The WMS extracts necessary CWL
attributes from jobs for scheduling
and executes the workflows on
remote resources using cwltool.
Outputs are then sent to a remote
storage resource to be fetched by the
TS.

CWL is part of Dirac’s dependencies, but is not yet
the default method for submission.
While users can already submit a JDL with a CWL
executable to the WMS, this feature remains
experimental.
Prototype systems for Production, Transformation,
and Job Management fully supporting CWL are
under development.
A transition plan for Dirac has been established to
adopt CWL across all systems and phase out JDL
and job description XML, though this process will
take several years to complete.
The integration of CWL into Dirac offers a
promising solution to enhance workflow
reproducibility and interoperability for large-scale
scientific research.

image
prod

image
merge

precision
0.05

merged
data

2.b. transformation
<workflow>.cwl <metadata>.yaml

workflow.cwl
workflow

prod
workflow

merge
workflow

prod
workflow

merge

WMS
Jobs embed the workflow and the inputs

and are executed on remote resources
based on their description

T
Prod

T
Merge

J
Prod

J
Merge

J
Prod

J
Prod

File
Catalog

P

Writing reproducible workflows
with CWLCWL

Reproducibility Crisis

in the
Dirac Middleware

Dirac
CWL

Dirac

Managing workflows in Dirac

Alexandre Boyer , Natthan Pigoux , Luisa Arrabito
1. CERN, EP Department, Geneva, Switzerland

2. Laboratoire Univers et Particules de Montpellier, CNRS/IN2P3, University of Montpellier, France

1 2 2

Results

References
B.A. Antunes, D.R.C. Hill, Reproducibility, replicability, and repeatability: A survey of
reproducible research with a focus on high performance computing (2024), 2402.07530
https://arxiv.org/abs/2402.07530 / M. Baker, Nature 533, 452 (2016) / M.R. Crusoe, S.
Abeln, A. Iosup, P. Amstutz, J. Chilton, N. Tijani´c, H. Ménager, S. Soiland-Reyes, B.
Gavrilovi´c, C. Goble et al., Commun. ACM 65, 54–63 (2022) / Stagni, Federico, Boyer,
Alexandre, Tsaregorodtsev, Andrei, Lytovchenko, Andrii, Sailer, André, Haen,
Christophe, Burr, Christopher, Bauer, Daniela, Fayer, Simon, Martyniak, Janusz et al.,
EPJ Web of Conf. 295, 04018 (2024)

2000

2008

Resource 1

Definition of a 2-step workflow in CWL
Definition of a “2-transformation” production JDL (Job description)

PS

description:
 site: HPC10
 priority: 10
metadata:
 type: ImgProd

metadata
prod.yaml

image-prod:
 description:
 site: HPC10
 priority: 10
 metadata:
 type: ImgProd

image-merge:
 description:
 site: HPC08
 priority: 10
 metadata:
 type: ImgMerge
 group_size: 3

steps
metadata.yaml

description:
 site: HPC08
 priority: 10
metadata:
 type: ImgMerge
 group_size: 3
 query_params:
 precision:0.05

metadata
merge.yaml

description:
 site: HPC10
 priority: 10
metadata:
 type: ImgProd

description
prod.yaml

description:
 site: HPC08
 priority: 10
metadata:
 type: ImgMerge
 query_params:
 precision:0.05

description
merge.yaml

Split each step and convert it
into a transformation

TS
Transformations wait for input based on
query parameters before submitting jobs

Resource 2

send
outputs

fetch
inputs

inputs

