Keep-up Production in JUNO Offline Data Processing

Weiqing Yin'?, Tao Lin'?, Yizhou Zhang'?
Institute of High Energy Physics
2University of Chinese Academy of Sciences

DA yinwg@ihep.ac.cn

Introduction

On behalf of JUNO collaboration

Job Management

/Jiangmen Underground Neutrino Observatory (JUNO): \

The Jiangmen Underground Neutrino Observatory is an important scientific
experiment located in Jiangmen, Guangdong Province, Chinall,

It aims to determine the neutrino mass hierarchy and provide precision measurements
of neutrino oscillation parameters. Additionally, JUNO will explore other areas of
neutrino physics, such as observing
supernova neutrinos and studying
the atmospheric, solar neutrinos and
geo-neutrinos.

The observatory utilizes a massive
20 kiloton liquid scintillator detector
located approximately 700 meters
underground, which helps to
minimize the interference from

cosmic rays and other background

\radiation.

ﬂorkflow: Involving data transfer, reconstruction, grid computing, and long-term \

data preservation. The entire workflow embodies complexity due to the intricate
relationships between these stages!l.

Data volume: Operating over 20-30 years, approximately 2PB of raw data annually.

JUNO onsite IHEP / Tier O JUNO DCI / Tier 1

Requirements of rec speed: < 5s/event
RAW =
(t/q, waveform) 1 Gbps network (dedicated) (/q, waveform)

Rec of one file takes: <115 hours (<5 days)
Data Volume: 5.2 TB/day, 2 PB/year
60 MB/s
ﬁﬁ :
: |
== TTTomommmmsmmmn mTTTTTTTTTTTmmmmT I
1 a 1 1 | 1
1 Sampling + I : 1 : Reconstruction 1
] Reconstruction : : 1 : (new calibration) 4
1 ; | 1 i 1

RAW

(t/q, waveform)

(JA\D) ESD
(PP) (PP)
Data Quality : E Offline Data

DAQ Event Rate: 1kHz | Monitoring : I Monitoring

Data Volume: 60 MB/s Lo S '

Each file size: 5 GB/file N\~ Delay: ~hour Delay: ~half day

N (Events) per file: 83,333 (=5GB / 60MB/s *

1kHz)

JUNO Data Monitoring Web Physics Analysis

.

\ JUNO Offline Data Processing Workflow

KUP Pipeline

The Keep Up Production (KUP) pipeline is designed to handle the challenges posed
by the complexity and volume of data.

Purpose and Objectives
Topics

I I 1 1 Subsystems
Establish a pipeline-driven approach that ’ =
manages the intricate and interdependent m _RAW

DCI
ER -
human intervention. _— Sbsystems Topics

steps of raw data processing with minimal
Topic

i RTRAW
Architecture
KUP employs a message-driven
architecture that decouples various ssing

subsystems within the pipeline, enables

DCI
each subsystem to operate asynchronously. m\’ Rv

Pipeline Architecture

Kafka in KUP j
Apache Kafka is a distributed event streaming platform known for its high throughput,

scalability, fault tolerance, and durability!2.

KUP leverages Kafka’s S— | Subsystems
— |
. Filenath T - .. - B - T '
message-driven Cieclsmn |
architecture to create oo N N gy [j

Topic SPADE

an asynchronous Voesage inden

processing e 05508 |

Kafka Stream

environment. TR

Message Queue

\ KUP Messaging System Architecture /

KUP Details 2

DCI Details 1 DCI Details 2

/.lob Submission \

The Job Submission process within the KUP is critical for automating and managing the
execution of data processing tasks. This process is designed to streamline job
management, replacing manual work with automation.

YAML is a human-readable data serialization format that uses indentation to represent
data hierarchy, making it easy to read and write for humans. The use of YAML provides

a flexible structure for defining KUP
job configurations. Users can oython
easily modify parameters without a N
needing to change the core code message

of the KUP system.

submit
query

message +
Job Monitoring offset >

The Monitoring component of -
KUP queries the cluster for the
running status of the job and N
saves it in the database. This
functionality is key to maintaining reschedule
operational stability and ensuring
that jobs run smoothly.

failed job
\ KUP Operation Process /

steps:

Web Portal

/The web design component of the KUP pipeline is key to providing an intuitive and \
efficient interface for users. This interface facilitates effective monitoring,
management, and interaction with the KUP system.

Architecture: The KUP web application is built on a separated front-end and back-end
architecture , which enhances the system's modularity and flexibility.

KUP SERVER

* Front-End : The user interface is developed

using Vue.js , a progressive
. SPADE » kafka MQ
JavaScript framework known

for its simplicity and powerful features.

 Back-End : The back-end are built using : =

WEB
backend

FastAPl, a modern, high-performance
WEB

framework for building APIs with Python.

frontend

 Reverse Proxy : Nginx is used as a reverse
proxy server to manage client requests and

route them appropriately between the nglix\

front-end and back-end applications. —/ \\
 Docker : All components of the KUP web tornal :

application—front-end, back-end, and Sysiem X

Nginx—are containerized using Docker . Web Architectu:::wser

This approach ensures isolation, scalability and portability.

Data Visualization : The key feature of the KUP web design is the data visualization:
@JUNOKUP

{2y Dashboard

Broker 0 Total messages ® Consumers lag
= Messages host” 192.168.51.11 101406 A o) Y RTRAW

partitions: 75 of 75 +20% than last me 2642 0 235 2642
% Sub-systems

24h messages CTA DCI DOM KUP
@& Analytics 2642 0 0 0 0
-3% than last day

Input Messages SPADE RTRAW

FILE NAME

OSIRISData_hybrid_ 20240630 082801_1003.dat 2024-06-30 18:46:43 transferred
{8 Settings

OSIRISData_hybrid_20240630_082801_1004.dat 2024-06-30 18:46:43 transferred
@ Help

OSIRISData hybrid 20240630 082801 1005.dat 2024-06-30 18:46:43 transferred

Web Page Display
 Real-Time Dashboard : The dashboard provides real-time visual representations of

message throughput, consumers lag, broker state. This includes graphical displays,
enabling users to quickly assess the state of the pipeline.

* Alert Systems : Visual cues such as color-coded notifications indicate job statuses
and alerts for any issues, providing instant recognition of critical situations.

Reference

[1] Abusleme A, Adam T, Ahmad S, et al. JUNO physics and detector[J]. arXiv preprint
arXiv:2104.02565, 2021.
[2] Garg N. Apache kafka[M]. Birmingham, UK: Packt Publishing, 2013.

