Fermilab’s Transition to Token
Authentication

Presented by Nick Smith
on behalf of the transition team
CHEP 2024
22 October 2024

2% Fermilab

Introduction

The X.509 proxy certificate user credentials for grid authentication never
came into common use in industry, so they needed to be replaced
All active experiments hosted at Fermilab have been sending JSON Web
Tokens (JWTs) with all grid jobs for over a year

— Tokens adhere to the WLCG Common JWT Profile

— Tokens are issued by ClLogon

Most components of the grid infrastructure software at Fermilab have
either been updated or replaced to support tokens

— Most are available as open source for others to use when they face similar
requirements

— Protocols follow open standards wherever possible
e Communication with ClLogon uses OIDC and Oauth2, adapted to primarily command line

Overall security goals: strongly protect long-lived credentials, and minimize
power of credentials that are widely exposed

Ease of use goal: minimize the need for end users to manage tokens

https://github.com/WLCG-AuthZ-WG/common-jwt-profile

Core of the system: Vault with htgettoken

Hashicorp Vault (or in future: fork OpenBao)

Popular general purpose secure secret store

Comes with Open ID Connect (OIDC) and Kerberos plugins

Integrates well with both Indigo IAM and ClLogon OIDC Providers

Manages access with its own tokens

We use it to store high-value long-lived refresh tokens for many users to limit security vulnerability

Configured with package htvault-config so the combination is sometimes called HTVault
* Adds modified OIDC plugin, oauth secrets plugin, and ssh-agent authentication plugin
Natively supports 3 servers for High Availability

htgettoken

Command line client to automate the HTVault flows
Initially authenticates via OIDC & a web browser

Long life (~1 month, renewable) refresh tokens stay in Vault, and limited life (1 week) Vault tokens and even shorter
life (3 hours) access JWTs stored unencrypted in local files

Follows WLCG Bearer Token discovery standard for local filename
Uses Vault tokens to get access tokens and renews Vault access with Kerberos (can also renew with ssh-agent)

Comes with helper tool httokensh which renews access tokens when needed for interactive use, and htdecodetoken
and htdestroytoken

Other organizations are also using these either in production or development (LIGO, JLAB, BNL, CMS)

https://github.com/fermitools/htvault-config
https://github.com/fermitools/htgettoken
https://github.com/WLCG-AuthZ-WG/bearer-token-discovery

htgettoken with Vault initial OIDC flow

JWT & refresh token

2
- 6 OpenID
Redirect with access Cnm::ect
Provider

ClLogon & FERRY

* ClLogon provides token issuing service

— Five larger collaboration experiments have their own issuer URL, but most share
https://cilogon.org/fermilab

— ClLogon also issues tokens for many other U.S.-based customers and is very
flexible in the way they do it

* A Fermilab-specific configuration system FERRY (Frontier Experiments
RegistRY) contains all the information about experiment membership,
roles, and token privileges

— Writes relevant information to a ClLogon-hosted database server (currently
LDAP) so issuer knows who is allowed to get tokens and the scopes in those
tokens (a.k.a capability sets)

— Another Fermilab-specific script htvault-gen reads experiments and roles from
FERRY to auto-generate almost all the configuration for htvault-config

https://cilogon.org/
https://cilogon.org/fermilab

Jobsub _lite, GlideinWMS, and HTCondor

Jobsub lite is our lightweight wrapper around HTCondor for a unified job submission
interface
— Open source but so far Fermilab is the only user
— Designed for use with tokens and with multiple HTCondor schedds on separate servers
* Also supports X.509 proxy certificates for now

— Submits jobs to batch cluster of both local nodes and remote resources added by GlideinWMS

* GlideinWMS was updated to use WLCG-profile access tokens to submit pilot jobs to site Computing
Elements

The condor-credmon-vault subpackage of HTCondor client & server integrates with
htgettoken & HTVault

— Supplies condor_vault_storer as a plugin to condor_submit and condor_credmon_vault as a
plugin to credd

— condor_vault_storer obtains and sends a 4-week vault token to condor_credmon_vault

— condor_credmon_vault regularly obtains new access tokens and then credd pushes them to
batch jobs via the condor shadow process

https://github.com/fermitools/jobsub_lite
https://github.com/glideinwms/glideinwms

Job Submission
P

o condor_schedd

Token flow with HTCondor and Vault

o = vault tokens

o = refresh tokens

° = access tokens

vault_storer

O

e -0

Token Issuer

condor_credd
credmon_vault

Job Execution

condor_startd

Identity Provider

>

Policy DB

Data Access

Managed Tokens service

htgettoken and HTVault were designed primarily with the interactive user use
case in mind, but there are also many unattended “robot” operations needed
These require long-lived credentials, which should be protected on a secured
“bastion” host
The Managed Tokens service handles this for all the experiments’ robot
operations

— Initial OIDC authentication handled by the operator

— Maintains Kerberos keytabs for each credential needed

— Pushes vault tokens to the robot machines
— Pushes vault tokens to all HTCondor credds by using condor_vault_storer
— Code is open source, intended for any user of HTVault with HTCondor

— See poster 489 for more details

https://github.com/fermitools/managed-tokens

Managed Tokens service

Bearer Token
(3 hours)

HTCondor Schedds/Credds

[Token Issuer (ClLogon) }

Vault Token
(28 days)

Vault Token
(28 days)

Bearer Token
(3 hours)

1 Refresh and Bearer Tokens
Bearer Token
Hashicorp Vault 9 ey
Refresh Token
(30 days)
1 Vault Token 4
(1 week)
Managed
Tokens Service
Machine Vault Token '
(1 week) Experiment Robot Nodes
Vault Token Bearer Token
Kerb
;;yf;gs (1 week) (3 hours)
Vault Token
(1 week)

Other updated components

We use dCache to store experiment data
— dCache was a pioneer in support of WLCG tokens, we just enabled it
— Handling of "sub-VO"s under the fermilab VO required non-trivial configuration
— Used directory ownership inheritance
ifdh is Fermilab’s internal “Intensity Frontier Data Handler”
— A command line front end for several other tools for moving data around
— Updated to locate tokens and send them along to the backend tools
POMS is Fermilab’s “Production Operation Management Service”

— Web & command-line based system for managing large experiment job campaigns such as Monte Carlo
production

— Updated to handle tokens in similar ways as the Managed Tokens service
RCDS is the “Rapid Code Distribution System”

— Fermilab installation of open source cvmfs-userpub which publishes individual user analysis code on demand
into CVMFS

— Updated to accept JWTs with compute.create scope for user authentication from any configured acceptable
token issuer

https://dcache.org/
https://github.com/cvmfs-contrib/cvmfs-userpub

Concluding remarks

System working reliably after fixing early issues
Getting credentials almost as hidden from users as they can be
— Users with Kerberos only need to approve on web browser once
Long-lived credentials stored only on minimal, secured hosts
Configuration is managed by server operators, nothing for end users
— Reducing scopes for best security managed by per-experiment experts

JWTs are better supported and more secure than X.509 proxies
— Can be much more purpose-specific

X.509 proxy certs are still sent with most jobs in case needed, but
some experiments have converted to use only tokens

Links

WLCG JWT profile
— https://github.com/WLCG-AuthZ-WG/common-jwt-profile

WLCG Bearer token discovery:
— https://github.com/WLCG-AuthZ-WG/bearer-token-discovery

ClLogon: https://cilogon.org

htvault-config: https://github.com/fermitools/htvault-config
htgettoken: https://github.com/fermitools/htgettoken

HTcondor: https://htcondor.readthedocs.io

Jobsub_lite: https://github.com/fermitools/jobsub lite
GlideinWMS: https://github.com/glideinwms/glideinwms
Managed Tokens: https://github.com/fermitools/managed-tokens
dCache: https://dcache.org

cvmfs-userpub: https://github.com/cvmfs-contrib/cvmfs-userpub

12

https://github.com/WLCG-AuthZ-WG/common-jwt-profile
https://github.com/WLCG-AuthZ-WG/bearer-token-discovery
https://cilogon.org/
https://github.com/fermitools/htvault-config
https://github.com/fermitools/htgettoken
https://htcondor.readthedocs.io/
https://github.com/fermitools/jobsub_lite
https://github.com/glideinwms/glideinwms
https://github.com/fermitools/managed-tokens
https://dcache.org/
https://github.com/cvmfs-contrib/cvmfs-userpub

	Slide 1: Fermilab’s Transition to Token Authentication
	Slide 2: Introduction
	Slide 3: Core of the system: Vault with htgettoken
	Slide 4: htgettoken with Vault initial OIDC flow
	Slide 5: CILogon & FERRY
	Slide 6: Jobsub_lite, GlideinWMS, and HTCondor
	Slide 7: Token flow with HTCondor and Vault
	Slide 8: Managed Tokens service
	Slide 9
	Slide 10: Other updated components
	Slide 11: Concluding remarks
	Slide 12: Links

