

Cold Storage support on CERN Open Data Portal

Pablo Saiz

21st Oct 2024

Repository of data

CERN Open Data Portal

- Launched in November 2014
- Plenty of content
 - Dataset

ullet

- Collision, simulated and derived
- Documentation
 - Glossary, tutorials, configuration, examples
- Software
 - Virtual machines, containers
- Current Size
 - > 5 PB
 - > 70k entries
 - > 2.5 million files

2

Recent updates in content

Data volumes

• Taken from J. Boyd at <u>4th DPHEP workshop</u>

• Table updated since originally created, and consistent with previous estimates

	ALICE (TB)	ATLAS (TB)	CMS (TB)	LHCB (TB)	Sum (TB)	Cumulative (PB)
2022	15	0	1089	200	1304	1.3
2023	20	150	872	4600	5642	6.9
2024	105	0	1436	0	1541	8.5
2025	105	0	1768	0	1873	10.4
Total	245	150	5165	4800	10360	

Cold Storage support

• Given:

- Amount of data: 5 PB, and increasing
- Long term data preservation and data immutability
- Accepted latency
- Multiple copies of data (?) (beware: data ownsership)
- Business Continuity and Disaster Recovery
- Are there any more efficient ways of long term archival?
- Possibilities:
 - Computing instead of storage
 P. Nogga: LHCb Open Data Ntupling Service
 - Cold Storage. Move part of the data to cheaper storage (Tape, experiment frameworks)

5

Current use case

1. Download files locally

Options

2. Download file index

→

O

→

O

opendata.cern/record/14011/files/CMS_HIRun2010_HIAllPhysics_ZS-v2_RECO_file_index.txt

root://eospublic.cern.ch//eos/opendata/cms/hidata/HIRun2010/HIAllPhysics/REC0/ZS-v2/0000/001DA267-7243-E011-B38F-001617C3B6CE.root
root://eospublic.cern.ch//eos/opendata/cms/hidata/HIRun2010/HIAllPhysics/REC0/ZS-v2/0000/0066DFBA-8F42-E011-A129-003048F1CA08.root
root://eospublic.cern.ch//eos/opendata/cms/hidata/HIRun2010/HIAllPhysics/REC0/ZS-v2/0000/0074BED0-4642-E011-B7D1-0030487BF6DC.root
root://eospublic.cern.ch//eos/opendata/cms/hidata/HIRun2010/HIAllPhysics/REC0/ZS-v2/0000/00896E66-7243-E011-88E9-003048CF99BE.root
root://eospublic.cern.ch//eos/opendata/cms/hidata/HIRun2010/HIAllPhysics/REC0/ZS-v2/0000/00942EEB-1843-E011-BFC6-0025901D5D78.root
root://eospublic.cern.ch//eos/opendata/cms/hidata/HIRun2010/HIAllPhysics/REC0/ZS-v2/0000/00C14524-A241-E011-8681-001D09F2AF96.root
root://eospublic.cern.ch//eos/opendata/cms/hidata/HIRun2010/HIAllPhysics/REC0/ZS-v2/0000/00CFD683-BF43-E011-9AE8-003048F1C592.root
root://eospublic.cern.ch//eos/opendata/cms/hidata/HIRun2010/HIAllPhysics/REC0/ZS-v2/0000/00EE9498-1443-E011-857F-003048CF65B4.root
root://eospublic.cern.ch//eos/opendata/cms/hidata/HIRun2010/HIAllPhysics/REC0/ZS-v2/0000/02046476-1843-E011-8A5F-003048F1BFB0.root
root://eospublic.cern.ch//eos/opendata/cms/hidata/HIRun2010/HIAllPhysics/REC0/ZS-v2/0000/020AA340-B541-E011-A913-003048F01118.root
root://eospublic.cern.ch//eos/opendata/cms/hidata/HIRun2010/HIAllPhysics/REC0/ZS-v2/0000/026B1178-0D42-E011-A691-001D09F34488.root
root;//eospublic.cern.ch//eos/opendata/cms/hidata/HIRun2010/HIAllPhysics/REC0/ZS-v2/0000/0276E2D1-8F43-E011-9CA3-0030487CD812.root
root://eospublic.cern.ch//eos/opendata/cms/hidata/HIRun2010/HIAllPhysics/REC0/ZS-v2/0000/027AD9DC-8F42-E011-B93A-0030487CD846.root
root://eospublic.cern.ch//eos/opendata/cms/hidata/HIRun2010/HIAllPhysics/REC0/ZS-v2/0000/029034A4-FA44-E011-B0BE-0030489454C0.root
root://eospublic.cern.ch//eos/opendata/cms/hidata/HIRun2010/HIAllPhysics/REC0/ZS-v2/0000/029F2DD0-E543-E011-B89A-003048D2BE06.root
root://eospublic.cern.ch//eos/opendata/cms/hidata/HIRun2010/HIAllPhysics/REC0/ZS-v2/0000/02AF478F-0D42-E011-AACF-0019B9F4A1D7.root
root://eospublic.cern.ch//eos/opendata/cms/hidata/HIRun2010/HIAllPhysics/REC0/ZS-v2/0000/02C1911F-3443-E011-8893-001D09F24FEC.root
root://eospublic.cern.ch//eos/opendata/cms/hidata/HIRun2010/HIAllPhysics/REC0/ZS-v2/0000/02C81180-EE41-E011-9A7A-003048F17C2E.root
root://eospublic.cern.ch//eos/opendata/cms/hidata/HIRun2010/HIAllPhysics/REC0/ZS-v2/0000/02CE606C-BA43-E011-9D4D-001D09F25456.root
root://eospublic.cern.ch//eos/opendata/cms/hidata/HIRun2010/HIAllPhysics/REC0/ZS-v2/0000/0419D93F-2D42-E011-941D-003048F174A0.root
root://eospublic.cern.ch//eos/opendata/cms/hidata/HIRun2010/HIAllPhysics/REC0/ZS-v2/0000/041C207D-D341-E011-A718-0025901D5C62.root
root://eospublic.cern.ch//eos/opendata/cms/hidata/HIRun2010/HIAllPhysics/REC0/ZS-v2/0000/045A69BA-9A42-E011-A797-0025901AF65A.root
root://eospublic.cern.ch//eos/opendata/cms/hidata/HIRun2010/HIAllPhysics/REC0/ZS-v2/0000/04E6F08D-2841-E011-822F-003048F16B8C.root
root://eospublic.cern.ch//eos/opendata/cms/hidata/HIRun2010/HIAllPhysics/REC0/ZS-v2/0000/060D607D-6C43-E011-9C1A-003048F1DBB0.root
root://eospublic.cern.ch//eos/opendata/cms/hidata/HIRun2010/HIAllPhysics/REC0/ZS-v2/0000/06575280-DC43-E011-9334-001D09F290CE.root
root://eospublic.cern.ch//eos/opendata/cms/hidata/HIRun2010/HIAllPhysics/REC0/ZS-v2/0000/066F9E0D-1F42-E011-8704-003048F117B4.root
root://eospublic.cern.ch//eos/opendata/cms/hidata/HIRun2010/HIAllPhysics/REC0/ZS-v2/0000/0686C22B-8E42-E011-B964-0030487CD712.root
root://eospublic.cern.ch//eos/opendata/cms/hidata/HIRun2010/HIAllPhysics/REC0/ZS-v2/0000/069F3A4C-6041-E011-A95B-001D09F23A20.root

Cold storage use case

Work in progress

Request staging

File and record status

- File can be:
 - Only on hot .
 - Only on cold
 - Both •

Record can have multiple files \bullet

- All files on hot
- Some files on hot •
- All files only on cold ۲

register_cold

register_hot

hot

archive

hot_cold

stage

cold

CLI for cold storage

Commands for the service managers

• With the goal of automating them later on...

\$ cernopendata cold list 15227

The files referenced in '15227' are:

- * Hot copy: root://eospublic.cern.ch//eos/opendata/cms/...
- * Hot copy: root://eospublic.cern.ch//eos/opendata/cms/...

Summary: 10 files (3.062 GiB), with 10 hot copies (3.062 GiB) and 0 cold copies (0 bytes)

\$ cernopendata cold archive 15227

Moving the record 15227 to cold: Checking if the file CMS... transfer has been issued! Checking if the file CMS... transfer has been issued!

10 transfers have been issued. Record 15227 moved.

\$ cernopendata cold list 15227

The files referenced in '15227' are:

- * Hot copy: root://eospublic.cern.ch//eos/opendata/cms/...
- * Cold copy: https://eosctapublic.cern.ch/eos/ctapublic/archive/opendata/cms/...
- * Hot copy: root://eospublic.cern.ch//eos/opendata/cms/...
- * Cold copy: https://eosctapublic.cern.ch/eos/ctapublic/archive/opendata/cms/...

Summary: 10 files (3.062 GiB), with 10 hot copies (3.062 GiB) and 10 cold copies (3.062 GiB)

Cold storage challenges

1. Monitoring

- 1. Identify candidates for cold storage
- 2. Keep track of cold storage requests

2. Transfer files

- A. CERN Tape Archive: FTS
- B. (Experiment frameworks: Dedicated plugins per experiment)

3. Data sovereignty

1. Experiment still responsible for data (!)

4. Multiple copies of datasets

Internal dashboard for Service Admin

Created early this year:

- Using logs from eos
- # accesses
- Volume transferred
- Breakdown per experiment
- Last 30-days
- Ongoing:
 - Keep long term stats
 - Map from file to record
 - Open it up
 - More breakdown categories
 - Prototype with MONIT-GRAFANA

Cold storage: current status

	1. Create tools to archive/stage/remove		
	2. Store information of multiple copies		
Ø	3. Agree on disk/tape quotas		
	4. Modify UI: display/search hot copies; request cold copies	X	
0	5. Automatic staging		
*	(Optional) Implement other cold storage alternatives	?	
CERN	Pablo Saiz CERN Open Data	21.10.2024	13

CERN Open Data Portal

- Digital repository with 5 PB of high energy physics data
 - Curated data: datasets, documentation, software...
 - 3 more in the process:

- Adding cold storage support:
 - Files might be stored on cheaper media, not immediately accessible.
 - Interface with FTS and CTA to archive/stage files
 - First round with manual operations triggered by user/curators requests
 - With the goal of automating it later on
 - Ongoing effort on improving the monitoring

opendata-team@cern.ch

http://opendata.cern

14

home.cern