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For a long time, I’ve wanted a “StackOverflow for HEP”

PyHEP 2019: I tried to
get everybody to use
StackOverflow, with tags
to carve out our space
within it.

JLab Future Trends 2022:
I acknowledged that it’s
not going well.

Analysis Ecosystem II 2022
and PyHEP.dev 2023:
Brainstorming sessions,
never landed on a solution.
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The current state of user-help across HEP software packages
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The ROOT Forum does not have this problem

▶ It’s easy for newcomers to find, and ROOT team ensures that there’s always
someone “on shift” to answer questions.

▶ Deep historical archive of past questions and answers.
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Similarly, IRIS-HEP Slack, Coffea Users in CMS Mattermost, and some GitHub
Discussions are very active. But the right forum can be hard to find, especially
for problems that span multiple software packages.

Moving active communities is hard, and runs the risk of dispersing them instead.

Better strategy: make an entry point that

▶ shows people where a question has already been answered

▶ leads people to the right place to engage with already-active communities.
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New monkey wrench
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Can a Large Language Model (LLM) be a first responder, either to
answer questions or to send people to a forum where their question
can be answered or has already been answered?

AI

humans
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LLMs for HEP is a popular topic this year!

RAG/search Leveraging Language Models to
Navigate Conference Abstracts: An
Open-Source Approach

Gordon Watts talk next talk,
here

RAG/search AccGPT: A CERN Knowledge
Retrieval Chatbot

Florian Rehm,
Juan Guijarro,
Sofia Vallecorsa,
Verena Kain

talk 20 minutes
ago, rm 2A

RAG/search Docu-Bot: AI assisted user support Jiri Chudoba poster maybe still
up, Lobby

code review Leveraging Language Models for
Enhanced Code Review in Particle
Physics Software Development

Alexey
Rybalchenko

poster Tue 3pm,
rm 4

domain-specific
chat-bot

Xiwu: A basic flexible and learnable
LLM for High Energy Physics

Ke Li, Siyang
Chen, Yiyu Zhang,
Zhengde Zhang

poster Tue 3pm,
rm 4

domain-specific
chat-bot

Boost physics study at HEP
experiments with Dr. Sai

same authors +
Yipu Liao

poster Tue 3pm,
rm 4

general Large Language Models in Physics Sarah Heim plenary Tue 11am8 / 21

https://indico.cern.ch/event/1338689/contributions/6011147/
https://indico.cern.ch/event/1338689/contributions/6011147/
https://indico.cern.ch/event/1338689/contributions/6011147/
https://indico.cern.ch/event/1338689/contributions/6010661/
https://indico.cern.ch/event/1338689/contributions/6010661/
https://indico.cern.ch/event/1338689/contributions/6010735/
https://indico.cern.ch/event/1338689/contributions/6010676/
https://indico.cern.ch/event/1338689/contributions/6010676/
https://indico.cern.ch/event/1338689/contributions/6010676/
https://indico.cern.ch/event/1338689/contributions/6010731/
https://indico.cern.ch/event/1338689/contributions/6010731/
https://indico.cern.ch/event/1338689/contributions/6010732/
https://indico.cern.ch/event/1338689/contributions/6010732/
https://indico.cern.ch/event/1338689/contributions/6066662/


One more, not here at CHEP: “chATLAS”
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One more, not here at CHEP: “chATLAS”

These are short questions;
more like Google searches.
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I started this March: https://hep-help.org
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I’m sold on GitHub as the user-interface

A GitHub Actions bot, wired into GitHub Discussions/Issues. . .

▶ is free of charge and already has a nice UI (and CLI),

▶ handles authentication and most of us already have accounts,

▶ is not ephemeral/private: answered questions stay up for others to see,

▶ can be commented on by humans (e.g. “Careful! The above is wrong!”),

▶ symmetrically cross-reference any GitHub issues/PRs they link to,

▶ is implemented in GitHub Actions, which can run any code,

▶ which can securely access secrets, such as an OpenAI API key.

The response can take up to a minute (much faster than a human responder).

Discussions or Issues? Discussions are threaded (3 levels) with up/down votes,
but Issues can ask users to fill out a structured form.
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How it works: using a CI workflow to respond to user posts

name: answer-query
on:

discussion:
types: [created, edited]

jobs:
answer-query:
name: answer-query
runs-on: ubuntu-latest
steps:
- name: Git checkout
uses: actions/checkout@v4
with:
fetch-depth: 0

- name: Get Python
uses: actions/setup-python@v5
with:
python-version: "3.11"

- name: Install dependencies
run: |
python -m pip install \

-r requirements.txt

- name: Get vector store
shell: bash
run: |
export TAG=`git describe --abbrev=0 --tags`
wget https://github.com/hep-help/hooray/ \

releases/download/$TAG/hep-help-db.zip
unzip hep-help-db.zip

- name: Produce response
shell: bash
env:
OPENAI_API_KEY: ${{ secrets.OPENAI_API_KEY }}
BODY: ${{ github.event.discussion.body }}

run: |
echo "$BODY" | python answer-query.py > ./text.md

- name: Post response
shell: bash
env:
APP_PRIVATE_KEY: ${{ secrets.APP_PRIVATE_KEY }}
DISCUSSION_ID: ${{ github.event.discussion.node_id }}

run: |
echo "$APP_PRIVATE_KEY" > ./key.pem
python comment-on-discussion.py

12 / 21



What remains to be done

▶ Gather documents from many sources: GitHub/GitLab, Slack,
(public?) Mattermost, Gitter, StackOverflow, Discord,
documentation websites, HSF-Training tutorial materials. . .

▶ Understand how LLM technology works to improve responses

▶ Streamline the user interface

▶ Advertise widely

(the rest of this talk)

13 / 21



What remains to be done

▶ Gather documents from many sources: GitHub/GitLab, Slack,
(public?) Mattermost, Gitter, StackOverflow, Discord,
documentation websites, HSF-Training tutorial materials. . .

▶ Understand how LLM technology works to improve responses

▶ Streamline the user interface

▶ Advertise widely

(the rest of this talk)

13 / 21



Possible workflow #1

human-readable
source documents

embedding space
(semantically similar

text → nearby vectors)

same
embedding space

human query
(question)

find nearest
matching

documents

fill an LLM's
context window
with documents

answer question
with the documents

in context

Retrieval-Augmented Generation (RAG):

An LLM is better able to answer questions if it has relevant information in its
(limited-size) context window.

Get information by passing documents and query through the same neural
network; in that embedding space, similar vectors are semantically similar text.
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Possible workflow #2

human-readable
source documents

embedding space
(semantically similar

text → nearby vectors)

same
embedding space

human query
(question)

find nearest
matching

documents

Just semantic search:

Maybe we don’t need the LLM at all! If we can match a query to semantically
similar documents, perhaps we should just recommend these documents.
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Possible workflow #3 (what hep-help currently does)

human-readable
source documents

embedding space
(semantically similar

text → nearby vectors)

same
embedding space

human query
(question)

find nearest
matching

documents

have the LLM
rate search results

by relevance

Semantic search with re-ranking:

Some embedding space matches aren’t actually related to the query, even though
they touch on the same concepts.

Use the LLM in a limited way: have it rate and describe how relevant each match
is to the human query.
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Possible workflow #4

human-readable
source documents

embedding space
(semantically similar

text → nearby vectors)

same
embedding space

human query
(question)

find nearest
matching

documents

have the LLM
generate sample

questions

Better targets in embedding space:

The human query is a question, and a question is a better semantic match to a
question than a document that would answer that question.

Use the LLM in a limited way: have it generate possible questions about the
source documents.
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Possible workflow #5

human-readable
source documents

embedding space
(semantically similar

text → nearby vectors)

same
embedding space

human query
(question)

find nearest
matching

documents

have the LLM
generate sample

questions have the LLM
rate search results

by relevance

Combine #3 and #4:

Note: the LLM cost for #3 scales with the number of documents, but

#4 scales with the number of human queries.
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Without a good embedding, we won’t find the right documents

So this is the most important thing to understand.
15 / 21



How much wiggle room is there between signal and background?

Consecutive Slack messages (IRIS-HEP Slack) are a large sample of
question-answer pairs: the “signal.” Non-consecutive ones are “background.”

16 / 21



Cleaner set of question-answer pairs: StackOverflow

Eliminating out-of-date
answers, we have 85
question-answer pairs.

(Almost all the answers
were written by me.)
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Could we even use them to fine-tune ChatGPT?

50%, 25%, 25% training, validation, test

Loss versus training step is not promising:

But whereas untuned ChatGPT always
attempts non-vectorized answers to user
questions, fine-tuned always attempts
vectorized (though usually wrong) ones.

Untuned ChatGPT:
# Loop over each sublist and replace the elements
for i, (sublist, mod, mod_idx) in enumerate(zip(

A_final, A_mod, A_mod_idx
)):

for idx, value in zip(mod_idx, mod):
sublist[idx] = value

# Convert the modified list back to an Awkward Array
A_final = ak.Array(A_final)

Fine-tuned ChatGPT: (ak.with_item does not exist)

>>> import awkward as ak
>>> A = ak.Array([[21.1, 22.1, 43.1], [73.1, 30.4], [43.1]])
>>> A_mod_idx = ak.Array([[0, 2], [1], []])
>>> mask = ak.is_none(ak.values_astype(
... ak.local_index(A, axis=1)[:, :, None] == A_mod_idx,
... bool,
... ), axis=2)
>>> mask
<Array [[False, True, ...], ..., [True]] type='3 * var * bool'>

# Now we can use ak.with_item to put the new values into the
# places where the mask is False:

>>> ak.with_item(A, A_mod, mask)
<Array [[1.1, 22.1, 2.1], ..., [43.1]] type='3 * var * float64'>
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Blind test: human vs untuned vs fine-tuned

I made a tool to conceal the author of an answer and “graded” answers on a
scale from 0 to 10. (I don’t consciously remember writing these answers.)

It takes 5–10 minutes to “grade” an answer; this can’t be done in bulk.
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What about using the LLM as a question-generator?

human-readable
source documents

embedding space
(semantically similar

text → nearby vectors)

same
embedding space

human query
(question)

find nearest
matching

documents

have the LLM
generate sample

questions

The similarity of a human query and an
LLM-generated question is slightly
better than a human query and the
human source documents (classic RAG).

(Is it enough to matter?)
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Inconclusive conclusions

▶ We do need a “funnel” to guide physicists toward help with
software, especially for questions that cross package boundaries.

▶ A GitHub Actions bot is a good interface/technology for that.

▶ In principle, LLMs can help, too!

▶ It’s a popular topic.

▶ But how this will work is unclear.

▶ It’s essentially a search problem, so understanding and
optimizing similarity in the embedding space is crucial.

21 / 21



Inconclusive conclusions

▶ We do need a “funnel” to guide physicists toward help with
software, especially for questions that cross package boundaries.

▶ A GitHub Actions bot is a good interface/technology for that.

▶ In principle, LLMs can help, too!

▶ It’s a popular topic.

▶ But how this will work is unclear.

▶ It’s essentially a search problem, so understanding and
optimizing similarity in the embedding space is crucial.

21 / 21



Inconclusive conclusions

▶ We do need a “funnel” to guide physicists toward help with
software, especially for questions that cross package boundaries.

▶ A GitHub Actions bot is a good interface/technology for that.

▶ In principle, LLMs can help, too!

▶ It’s a popular topic.

▶ But how this will work is unclear.

▶ It’s essentially a search problem, so understanding and
optimizing similarity in the embedding space is crucial.

21 / 21



Inconclusive conclusions

▶ We do need a “funnel” to guide physicists toward help with
software, especially for questions that cross package boundaries.

▶ A GitHub Actions bot is a good interface/technology for that.

▶ In principle, LLMs can help, too!

▶ It’s a popular topic.

▶ But how this will work is unclear.

▶ It’s essentially a search problem, so understanding and
optimizing similarity in the embedding space is crucial.

21 / 21


