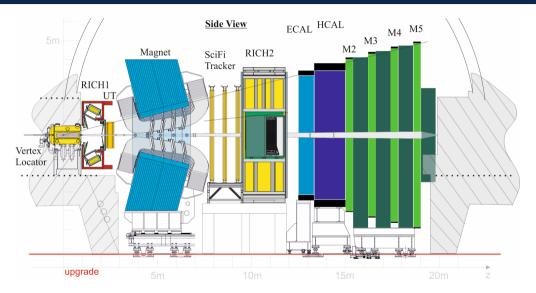
Leveraging Workflow Engines and Computing Frameworks for Physics Analysis Scalability and Reproducibility

Conference on Computing in High Energy and Nuclear Physics (CHEP 2024)

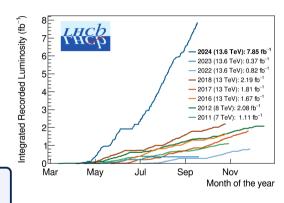
Dr. Mindaugas Šarpis

Vilnius University

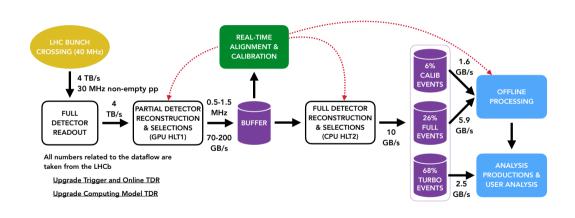
October 22, 2024



Quick Look at LHCb - Example of a Large Experiment



Amount of Data in Run3 and Beyond


- The amount of data collected by the LHC and other large experiments is exploding
- In 2024, LHCb already collected more pp collision data than in all the previous years combined

	ALICE	ATLAS	CMS	LHCb
Run 2:	2 PB	0.5 PB 1.0 PB 1.5 PB	2 PB	10 PB*
Run 3:	4 PB	1.0 PB	4 PB	45 PB
Total:	6 PB	1.5 PB	6 PB	55 PB

Example of Data Flow in HEP

regression-models uncertainty-quantification b-tagging background-suppression
data-reduction luminosity event-filtering
alignment systematics
track-fitting monte-carlo simulation neural-networks event-reconstruction calibration kinematics p-value machine-learning classifiers particle-identification selection cross-section artificial-intelligence bayes-theorem deep-learning vertexing jet-clustering signal-extraction mva grid-computing decision-trees by a section of the section grid-computing decision-trees hyperparameter-tuning

2030

Al Assisted Data Science Autonomous Platforms Interdisciplinary Al models

202

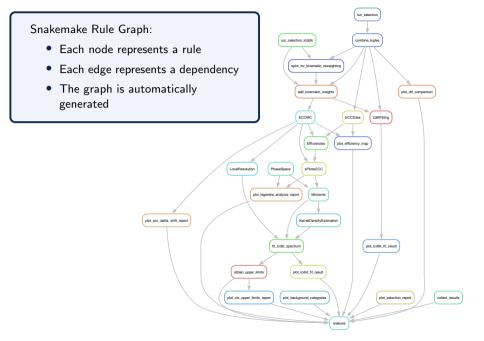
AutoML Advanced Deep Learning Data Pipelines

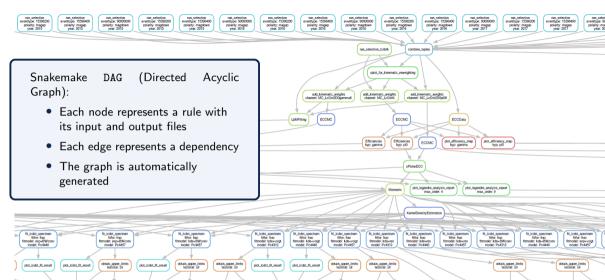
201

Data Lakes Deep Learning

Big Data Machine Learning Relational Databases

2011


201



plot_cls_upper_limits_report

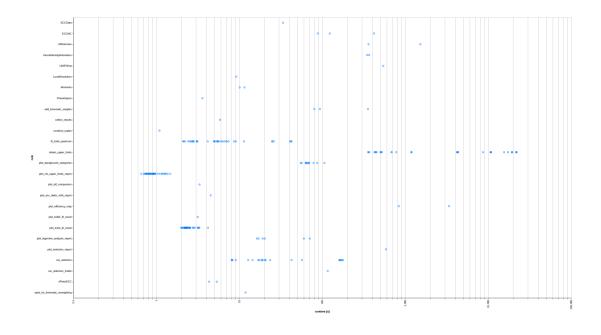
plot_cls_upper_limits_report

plot_lodst_fit_result

plot_cls_upper_limits_report

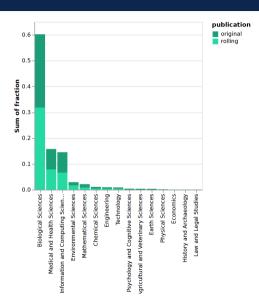
plot_cls_upper

nict lodet fit result


plot_cls_upper_limits_recort

plot_cls_upper_limits_report

is_upper_limits_report


plot_cls_upper_limits_report

analysis

Adoption of Snakemake

- Snakemake is a great example of a tool serving interdisciplinary research
- It helps with the reproducibility of the analysis
- There are a number of great features enhancing the analysis Workflow
- It is still growing in popularity in HEP community

Conclusions

- A modern HEP (or any larger scale) data analysis is becoming impossible without proper workflow management
- There are a number of tools available to ensure analysis reproducibility and scalability
- Workflow engines like Snakemake facilitate the process of efficient analysis
- On the other hand, with the same resources and effort a large scale analysis can be undertaken if using modern workflow paradigms

Thank you for your attention!