

CHEP 2024

A technical overview of industry-science R&D projects for the High Luminosity LHC under CERN openlab

Thomas James (CERN) on behalf of the CERN openlab technical team

> Maria Girone (head), Luca Atzori, **Thomas James**, Antonio Nappi, Luca Mascetti

CERN OPENLAB MISSION

Primary role

To act as conduit and facilitator for collaboration in computing, science, and technology between:

, CERN

HL-LHC CHALLENGES

- Current data analysis ecosystem under-equipped to handle the expected increase in data generation and complexity of High-Luminosity LHC.
- Based on current technological evolution, offline processing will fall an order of magnitude short of the demand of HL-LHC.
- Must embrace new hardware architectures, and heterogeneous hardware infrastructure.
- Must make significant investment in testing and integration of novel hardware architectures produced by both the research community and industry.

CERN OPENLAB PHASE VIII

Structured three-year phase cycles:

- systematically assess technological evolution
- anticipate future needs

OBJECTIVES

delineate overarching thematic priorities.

Establishing a managed portfolio of small to medium-size, agile projects with technology providers with clear impact on the CERN IT Technology Roadmap.

Identifying a few collaborations, especially at the level of the computing infrastructures, of high potential impact and act as an initial incubation step for longer-term collaborations.

Sustainable Infrastructures

platforms and infrastructures

Heterogeneous computing

Computer architectures and

software engineering

Storage and data

management

Emerging Technologies

- New materials for long term digital storage
 - Digital twins
 - Quantum computing and networks
- Artificial intelligence algorithms, platforms and applications
- Applications for society and environment

HETEROGENEOUS ARCHITECTURES

Hardware landscape becoming increasingly heterogeneousvaried, often more specialised and high-performing architectures entering market.

CERN openlab has established a heterogeneous architectures testbed

- provides a rich ecosystem to access and evaluate novel architectures
- on-premise and remote resources.

<u>HEPscore benchmark</u> allows for performance comparison across architectures

 reported to, and analysed by, industry and research partners.

- ▶ 100+ users & 290+ accounts
- ∼95 systems, mostly bare-metal
- Used by ATLAS, CMS, LHCb, QTI, ML research in IT department
- ∼200 tickets handled p/a

CERN Openlab

**Remote access via Simons foundation

- ► 100+ users & 290+ accounts
- ► ~95 systems, mostly bare-metal
- Used by ATLAS, CMS, LHCb, QTI, ML research in IT department
- ~200 tickets handled p/a

CERN Openlab

openlab

AI TRAINING AND INFERENCE OPTIMISATION ON HPC

- CERN openlab is involved in projects that are implementing and optimising HEP AI/ML algorithms and workflows for HPC
- To ensure usability and duplicability of efforts, best practices for scaling AI models on HPC are developed and documented
- Euro HPC access for development, benchmarking, and large-scale AI

Enables Machine Learning and AI algorithms and processing techniques

Opens the possibility for real-time interactive simulations (Digital Twins)

Burst/elastic resource scheduling

A path to optimize energy usage

Requires technology migration and redesigning of

New resources for processing

applications

Encourages stronger engagement with industry, other science communities and the HPC computing community

Requires strategic planning and communication with the existing distributed computing community

Requires collaborating with HPC sites to develop common solutions to overcome technical challenges, leveraging on externally funded initiatives (EuroHPC, EC funded projects, industry,..)

AI ON EDGE DEVICES

LHC produces vast amounts of data every second billions of collisions per second during operation

- Without selection would generate ~ Pb/s raw data for CMS & ATLAS
- Impossible to readout/process/store all data
- Particles of interest rare among background
 - Need fast trigger to select interesting collisions for analysis with high efficiency, low fake rate

Fast ML *at the edge* needed for reducing and filtering data in real-time; 'train offline', 'predict online'

Results from CMS and ATLAS demonstrate that ML on FPGAs can be used to improve selection efficiency and purity while keeping processing latency within fixed limits

CERN

🚅 openlab

REAL-TIME DATA PROCESSING ON CXL ARCHITECTURES

In collaboration with micron. E4 COMPUTER ENGINEERING

- Near memory compute
- Low-latency
- High bandwidth
- Cache coherence

Emerging open standard for highbandwidth heterogeneous, disaggregated computing

A memory lake architecture providing shared memory for heterogeneous computing units with a coherent view

memory lake prototype for CMS data acquisition

See poster on Thursday

HYBRID AND CLOUD NATIVE APPLICATIONS

General move to container-based systems:

Cloud Native Computing Foundation:

- Open-source, vendor-neutral hub
- Hosting Kubernetes and its technologies landscape

Kubernetes:

CERN

🗾 openlab

- Open-source orchestration for automated deployment, scaling, management of containerised applications;
- CERN services already on platform (EDH, SSO, WLCG IAM, Gitlab, Rucio, SWAN, etc ...)
- Advantages: interoperability (hybrid & multi-cloud); repeatability, resilience, deployment speed, auto-recovery
- Leveraging for sustainability, cost modelling, and disaster recovery [link]
- Evolving towards cloud-native AI

backbone and the Oracle Cloud Infrastructure

NEW MATERIALS & TECHNOLOGIES FOR STORAGE SOLUTIONS

Evaluating emerging storage solutions

cern openlab

Pioneering sustainable infrastructures for data storage and archiving

CERN IT - Operated Disk Storage Capacity

ATLAS and CMS online storage predictions

In collaboration with

Cerabyte

PURESTORAGE[®]

COMMUNICATION, EDUCATION & OUTREACH

As a part of the education and training programme, CERN openlab **runs various initiatives that support participation of young scientists and other research organisations**

Technical Workshop

Annual workshop to review the R&D projects carried out during the last year and discuss future plans. The event features technical talks, a poster session and a technology track dedicated to our industrial partners

CERN openlab relies on Communication, Education & Outreach actions

CERN CERN

SUMMARY

- CERN openlab has proven to be an invaluable mechanism by which to involve industry and access cutting-edge architectures in service of developing, testing, and integrating these new technologies.
- Meeting the future demands of the particle physics community requires embracing new hardware architectures and a heterogeneous hardware infrastructure.
- Openlab projects both diverse and impactful, across many domains.

Maria Girone Head of Openlab

ern CERN

Thomas James CTO for AI and Edge devices

Antonio Nappi CTO for Platforms and Workflows

Luca Mascetti CTO for Storage

Luca Atzori CTO for Computing

Killian Verder CTO Office Administration

Chief Communications

Officer

Kristina Gunne Chief Admin and Finance Officer

https://openlab.cern/

DIGITAL TWINS OF ACCELERATORS AND DETECTORS

Storm

prediction

Radio astronomv

> Lattice QCD

- Real-time virtual representation of physical object, system, or process
 - Mirroring its behaviour, performance, and environment
- Enables users to monitor, analyse, and optimise physical counterpart by interacting with the digital model
- Rely on AI/ML models to simulate the response
 - Cloud or on-prem. resources are sufficient for inference;
 - Large-scale training on extensive scientific datasets, hyperparameter optimisation requires HPC.
- InterTwin 'unified digital twin engine' for AI-based scientific DTs
- Uses @ HL-LHC: Detector prototyping and optimisation
 - Fast simulation of detector response to varying beam/environmental conditions

CERN

🚅 openlab

High-energy

physics

Gravitational

waves

19