

Global Networking Challenges for the Coming Decade

Tony Cass, CHEP 2024, 23rd October 2024

With thanks to Carmen Misa Moreira, Edoardo Martelli, Marian Babik, Enzo Capone, Bruno Hoeft, Lars Fischer, Pepe Flix, David Kelsey & Shawn McKee

Nothing here about...

- Geopolitical risks
 - Undersea cables
 - Climate change mitigations
 - ... but HEP is well set here
- Computing landscape changes
 - Cloud services
 - HPC centres
- 156. Integration of the Barcelona Supercomputing Center for CMS computing: towards large scale production
 ▲ Dr Josep, Flix (CLEMAT PIC)
 CHEP 2023
 (0) 5/11/23, 11:30 AM

... so what am I going to talk about?

Katy in Hamburg: "There are other bottlenecks than network bandwidth"

Data challenge series

~DC24 using DC29's y-axis

10	Tb/s
9	
8	
7	
6	
5	
4	
3	
2	and and the state of the stat
1	
0	

What challenges?

- Ethernet bandwidths keep increasing
- There are new te
- There is plenty

As presented last year we have a pilot link based on multidomain Spectrum sharing Connection.

1999 predictions for2006 network capability

Hans Döbbeling/DANTE GEANT2 for LHC, NIKHEF, Amsterdam, 21.1.2005.

What challenges?

• It hasn't always been plain sailing

European Demand and Capacity Forecasts (updated March 2021)

Early LHC data transfers worried NRENS!

Scale is 0 – 6.0 Gbps

•

The Nee

The Need for Traffic Engineering – Example

- GÉANT obs
 This high degree of parallelism means that the largest hosthost data flow rate is only about 2 Mbps, but in aggregate this data mover farm is doing 860 Mbps (seven day average) and has moved 65 TBytes of data
 - this also makes it hard to identify the sites involved by looking at all of the data flows at the peering point – nothing stands out as an obvious culprit
 - THE ISSUE:
 - This clever physics group is consuming 60% of the available bandwidth on the primary U.S. – Europe general R&E IP network link – for weeks at a time!
 - This is obviously an unsustainable situation and this is the sort of thing that will force the R&E network operators to mark such traffic on the general IP network as scavenger to ensure other uses of the network

What challenges?

- It hasn't always been plain sailing
- Our data transfers are (mostly) inefficient ...
 - ... and we don't understand them

DC24 Bandwidth Per Flow

Plot by Tristan Sullivan from analysis of Esnet High-Touch data collection (Yatish Kumar)

Jumbo Frames

LHCONE Histogram Datarate where total bytes > 100MB (group by start) Data 18th February 2024 [WLCG Data Challenge]

Understanding Traffic Flows

How scitags work

DC24: CERN EOS CMS

Max duration of flows split by Exp/Activity

First week had a lot of "fat" flows from production activity (but none from DC)

Second week was different, some DC flows took hours to finish

HEP<mark>ix</mark>

- (C) Community identifier: "Who are you affiliated with?"
- (A) Activity identifier: "What are you doing within your community?"
- (E) Entropy bits sprinkled throughout

IETF RFC-Informational Draft is available with more details

Started exploring HbH option as an alternative (eBPF-PDM, eBPF-extHeaders)

But this only works with IPv6!

Managing Traffic Flows: NOTED

88. Diving into large-scale congestion with NOTED as a network controller and machine learning-

O 24/10/2024, 17:27

NOTED in action

Packet pacing

Congestion Protocols BBRv3

What challenges?

- It hasn't always been plain sailing
- Our data transfers are (mostly) inefficient ...
 - ... and we don't understand them
- More global data-intensive science collaborations
 - LHC traffic won't always be dominant
 - Life will be more complicated

Belle II

Belle II Data Challenge 2024 within WLCG DC24

Main goal: Emulate data transfer conditions in a Belle II high-lumi scenario.

Transfers from KEK to RAW Data Centers according to our distribution schema (estimated 40TB/day to be distributed with the following share 30%BNL, 20%CNAF, 15% IN2P3CC, 15%UVic, 10%DESY, 10%KIT)

- Min The target speed to achieve is 3x3.7Gbit/s = 11.1 Gbit/s
- Max The target speed to achieve is 5x3.7Gbit/s = 18.5 Gbit/s

Tests fully succeeded. Results will be present at Poster Session of CHEP2024 in Krakow

https://indico.cern.ch/event/13386 89/contributions/6010887/

> Courtesy Silvio Pardi University Federico II and INFN, Naples

DUNE Involvement in WLCG Data Challenge 24

"FD" Raw Data archival storage

- translates to 10 Gbit/s from SURF to FNAL
- replicate that "FD" raw data to archival storage facilities around the world
- replicate the "FD" raw data to disk storage elements around the world for prompt access from compute elements
- job processing of the raw data drastically reduces the data volume of derived datasets transferred back to RSEs

array size, but also capabilities*

Courtesy Ian Collier, Rosie Bolton & Shari Breen

SKA Regional Centre Broad Distribution: Fair Share (if ~50 Gbps per SKAO site) • Roughly, 6 global zor

e.g. if 50+50 gbps from sites, a 10% partner receives 20Gbps data (200 TBytes per day, 70 PBytes per year)

 Roughly, 6 global zones of equivalent size (Canada smaller)

Slide / 15

- Distribute two base copies of each data product to different countries, and perhaps insist to different regions
- Average incoming rate per (20%) region not more than 2x20 Gbit/s = 40Gbit/s (~2x6 Gbit/s for Canada)

Modelling assumes average 100 Gbit/s out of SA and AUS

SKA estimated data rates*

*these numbers should be used as a guide only - email Shari.Breen@skao.int for further information about ongoing work

Numbers refer to data to be delivered to the science community via the SRCNet

Milestone	Year	Primary activity	Estimated data rate		
			Low	Mid	
AA2 • 64 Mid dishes • 64 Low stations	2026 - 2027	Science Verification - observed in dedicated -week long blocks + single observations interspersed throughout. A higher rate of raw data products will be included at this stage.	1.5 PB/week^ 20 Gbps	2 PB/week^ 27 Gbps	
AA* • 144 Mid dishes • 307 Low stations	2027 - 2029	Science Verification - observed in dedicated ~week long blocks + single observations interspersed throughout. A higher rate of raw data products will be included at this stage.	5 PB/week^ 66 Gbps	9 PB/week^ 119 Gbps	
AA* • 144 Mid dishes • 307 Low stations	2029 +	Operations - Observation cycles, starting with shared risk observing, building to successful science observations ~90% of the time	173 PB/year 44 Gbps	280 PB/year 72 Gbps	
Target is to deliver the SKA Baseline Design but the details of this transition between AA* and AA4 are TBD					
AA4 • 197 Mid dishes • 512 Low stations	2030 +	Operations - full SKA baseline design	216 PB/year 55 Gbps	400 PB/year 100 Gbps	

^Data rates refer to dedicated Science Verification observing weeks, not an average over a year

Observatory overview

SITE

southern hemisphere | 2647m a.s.l. stable air | clear sky | dark nights good infrastructure

main mirror Ø 8.4 m (effective 6.4 m) large aperture: f/1.234 | wide field of view | 350 ton | compact | to be repositioned about 3M times over 10 years of operations

CAMERA

3.2 G pixels | Ø 1.65 m | 3.7 m long | 3 ton | 3 lenses | 3.5° field of view | 9.6 deg² | 6 filters ugrizy | 320-1050 nm

Projected data transfer rates

Adapted from R. Dubois, Rubin Observatory

FRA C RURIN

Cumulative data volume

~0.5 EB of data by the end of the survey by 2035

raw image data (~50 PB)

These estimations make some assumptions that we may need to revisit as we learn how data reprocessing will proceed in real-life conditions

More global science – More complication

LHCONE in a multi-science world multiple "LHCONEs"

Each site joins only the VPNs of the groups it is collaborating with (e.g. ATLAS-ONE, CMS-ONE, DUNE-ONE, BelleII-ONE...)

- Major Benefit: reduced exposure of data-centre/Science-DMZ to other sites
- **Major Challenge**: how to correctly route traffic into VPNs at sites that join several of them? Operational complexity

Network Routing Wizadry

Summary

- Wide area networking will continue to deliver quality services for the HEP community into the HL-LHC era.
- But
 - we need to (re)learn how to transfer data efficiently,
 - we need to understand and perhaps manage traffic flows,
 - IPv4 has to go, and
 - life will be more complicated in a multi-science world.

