
Front-End RDMA Over Converged Ethernet, lightweight

RoCE endpoint
Gabriele Bortolatoa,b,c, Antionio Bergnolia,b, Damiano Bortolatod, Daniele Mengonia,b, Matteo Migliorinic, Fabio Montecassianoa,
Jacopo Pazzinia,b,e,f, Andrea Triossia,b, Sandro Venturaa, Marco Zanettia,b

aINFN sez. Padova, bDFA Padova University, cCERN, dINFN LNL, eDEI Padova University, fDII Padova University

23rd October 2024 Front-End RDMA Over Converged Ethernet 1

Introduction on RDMA and RoCE

In a DAQ system a large fraction of CPU resources is engaged in
networking rather than in data processing; common network stacks
that take care of network traffic usually manipulate data through
several copies.

NIC RNIC/FPGA

Transport
protocol driver

Socket

Application

Transport
protocol driver

Socket

Application

TCP/UDP
stream

RDMA
stream

B
uffer

B
uffer

B
uffer

B
uffer

Remote Direct Memory Access (RDMA), as the name suggests, allows read and write operations directly in the
target machine(s). This implies no OS involvement allowing high-throughput and low-latency applications.

This requires RDMA enabled NICs on both ends (RNIC) that perform the DMA, reducing the CPU load.

23rd October 2024 Front-End RDMA Over Converged Ethernet 2

RDMA protocols

Many RDMA flavours are available:

• InfiniBand, it requires IB capable switches

• RoCEv1, it introduces the Ethernet framing, enable use of commodity switches

• RoCEv2, it adds the UDP/IP transport protocol

LRH IB GRH IB BTH
(+ RETH/AETH)

IB Payload ICRC VCRC

InfiniBand

• Local and Global Route Headers (L2 and L3 respectively)

• Base and Extended Transport Headers (L4)

23rd October 2024 Front-End RDMA Over Converged Ethernet 3

RDMA protocols

Many RDMA flavours are available:

• InfiniBand, it requires IB capable switches

• RoCEv1, it introduces the Ethernet framing, enable use of commodity switches

• RoCEv2, it adds the UDP/IP transport protocol

Eth L2
Header

IB GRH IB BTH
(+ RETH/AETH)

IB Payload ICRC FCS

Type

LRH IB GRH IB BTH
(+ RETH/AETH)

IB Payload ICRC VCRC

InfiniBand

RoCEv1

• Eth L2 Header instead of LRH

23rd October 2024 Front-End RDMA Over Converged Ethernet 3

RDMA protocols
Many RDMA flavours are available:

• InfiniBand, it requires IB capable switches

• RoCEv1, it introduces the Ethernet framing, enable use of commodity switches

• RoCEv2, it adds the UDP/IP transport protocol

Eth L2
Header

IB GRH IB BTH
(+ RETH/AETH)

IB Payload ICRC FCS

Eth L2
Header

IP
Header

IB BTH
(+ RETH/AETH)

IB Payload ICRC FCSUDP
Header

Type

Type

LRH IB GRH IB BTH
(+ RETH/AETH)

IB Payload ICRC VCRC

InfiniBand

RoCEv1

RoCEv2

• Drop the use of Global ID (GID) in favour of IP (RoCEv2 UDP port number 4791)

23rd October 2024 Front-End RDMA Over Converged Ethernet 3

RDMA protocols
Many RDMA flavours are available:

• InfiniBand, it requires IB capable switches

• RoCEv1, it introduces the Ethernet framing, enable use of commodity switches

• RoCEv2, it adds the UDP/IP transport protocol ←

Eth L2
Header

IB GRH IB BTH
(+ RETH/AETH)

IB Payload ICRC FCS

Eth L2
Header

IP
Header

IB BTH
(+ RETH/AETH)

IB Payload ICRC FCSUDP
Header

Type

Type

LRH IB GRH IB BTH
(+ RETH/AETH)

IB Payload ICRC VCRC

InfiniBand

RoCEv1

RoCEv2

RoCEv2 is the only industry-
standard Ethernet-based RDMA
solution with a multi-vendor
ecosystem. For this reason it has
been chosen as target protocol.

Honourable mention

• iWARP, congestion-aware protocols, but higher complexity

23rd October 2024 Front-End RDMA Over Converged Ethernet 3

Front-End RDMA over Converged Ethernet

Constant trend in producing larger and larger dataset in almost every experimental physics field, new
requirements arise form that:

• High throughput, low latency

• Efficient data movement

Such requirements lead to clever ideas and features:

• Zero-copy protocols such as InfiniBand or RoCE

• Move network protocol directly in the front-end electronics (FPGA)

• Need to be scalable 1/10/100 Gb/s to target different scenarios

• Multi-vendor ecosystem Xilinx/Microchip/Altera

What can we achieve?

• Front-end initiates the RDMA transfer

• No point-to-point connection between front-end back-end

• Dynamical switching routing with COTS (lowering the costs and maintenance)

23rd October 2024 Front-End RDMA Over Converged Ethernet 4

Front-End RDMA over Converged Ethernet

Constant trend in producing larger and larger dataset in almost every experimental physics field, new
requirements arise form that:

• High throughput, low latency

• Efficient data movement

Such requirements lead to clever ideas and features:

• Zero-copy protocols such as InfiniBand or RoCE

• Move network protocol directly in the front-end electronics (FPGA)

• Need to be scalable 1/10/100 Gb/s to target different scenarios

• Multi-vendor ecosystem Xilinx/Microchip/Altera

What can we achieve?

• Front-end initiates the RDMA transfer

• No point-to-point connection between front-end back-end

• Dynamical switching routing with COTS (lowering the costs and maintenance)

23rd October 2024 Front-End RDMA Over Converged Ethernet 4

Front-End RDMA over Converged Ethernet

Constant trend in producing larger and larger dataset in almost every experimental physics field, new
requirements arise form that:

• High throughput, low latency

• Efficient data movement

Such requirements lead to clever ideas and features:

• Zero-copy protocols such as InfiniBand or RoCE

• Move network protocol directly in the front-end electronics (FPGA)

• Need to be scalable 1/10/100 Gb/s to target different scenarios

• Multi-vendor ecosystem Xilinx/Microchip/Altera

What can we achieve?

• Front-end initiates the RDMA transfer

• No point-to-point connection between front-end back-end

• Dynamical switching routing with COTS (lowering the costs and maintenance)

23rd October 2024 Front-End RDMA Over Converged Ethernet 4

Front-End RDMA over Converged Ethernet

Constant trend in producing larger and larger dataset in almost every experimental physics field, new
requirements arise form that:

• High throughput, low latency

• Efficient data movement

Such requirements lead to clever ideas and features:

• Zero-copy protocols such as InfiniBand or RoCE

• Move network protocol directly in the front-end electronics (FPGA)

• Need to be scalable 1/10/100 Gb/s to target different scenarios

• Multi-vendor ecosystem Xilinx/Microchip/Altera

What can we achieve?

• Front-end initiates the RDMA transfer

• No point-to-point connection between front-end back-end

• Dynamical switching routing with COTS (lowering the costs and maintenance)

23rd October 2024 Front-End RDMA Over Converged Ethernet 4

What is FERoCE?

Front-end Back-end

Commercial Switch

Computing Farm

Back-end boards required to get the data, and send it
to the computing farms. This requires multiple custom
cards and custom boards

Front-end Computing Farm

Commercial Switch

Front-end boards send data already packaged within an
ethernet frame allowing switching and routing.
Choosing the proper protocol allows the use of COTS
switches

Alex Forencich Ethernet components repository has been chosen as frame. Some of its characteristics:
• Entirely written in Verilog (HW portable!)

• Handwritten MAC

• It supports 10/25G

• Multiple protocols ETH, ARP, IP and UDP

23rd October 2024 Front-End RDMA Over Converged Ethernet 5

https://github.com/alexforencich/verilog-ethernet

What is FERoCE?

Front-end Back-end

Commercial Switch

Computing Farm

Back-end boards required to get the data, and send it
to the computing farms. This requires multiple custom
cards and custom boards

Front-end Computing Farm

Commercial Switch

Front-end boards send data already packaged within an
ethernet frame allowing switching and routing.
Choosing the proper protocol allows the use of COTS
switches

Alex Forencich Ethernet components repository has been chosen as frame. Some of its characteristics:
• Entirely written in Verilog (HW portable!)

• Handwritten MAC

• It supports 10/25G

• Multiple protocols ETH, ARP, IP and UDP

23rd October 2024 Front-End RDMA Over Converged Ethernet 5

https://github.com/alexforencich/verilog-ethernet

What is FERoCE?

Front-end Back-end

Commercial Switch

Computing Farm

Back-end boards required to get the data, and send it
to the computing farms. This requires multiple custom
cards and custom boards

Front-end Computing Farm

Commercial Switch

Front-end boards send data already packaged within an
ethernet frame allowing switching and routing.
Choosing the proper protocol allows the use of COTS
switches

Alex Forencich Ethernet components repository has been chosen as frame. Some of its characteristics:
• Entirely written in Verilog (HW portable!)

• Handwritten MAC

• It supports 10/25G

• Multiple protocols ETH, ARP, IP and UDP

23rd October 2024 Front-End RDMA Over Converged Ethernet 5

https://github.com/alexforencich/verilog-ethernet

Real-time Firmware simulation
Why a dynamic firmware simulation is needed?

Stimulus Output
Checker

IP

IPIP

IP

DUT

IP

IPIP

IP

DUT
Dynamic stimulus

Third party tools
for checking

R
TL

 s
im

ul
at

io
n

S
of

tw
ar

e
do

m
ai

n

• Narrow test-case, limited by the stimulus

• Difficult to evaluate the RoCE stream produced

• Easy to set-up

• Explore wider test-case phase space

• Feed/Get ethernet frames directly to/from the
code

• Simulate the HDL code even if produced with
HLS code

• Capture frames with third party programs (e.g.
Wireshark)

• Possibility to treat it as a device and send frames
to Soft-RoCE or to a physical RNIC

23rd October 2024 Front-End RDMA Over Converged Ethernet 6

Real-time Firmware Simulation
Start form Alex Forencich network stack. Functionalities and features must be understood: real-time firmware
simulation with real network traffic.

• Works on Linux machines: Tun/Tap devices

• It makes use of DPI-C interface of SystemVerilog: C code in our testbench!

• Tap device exchanges raw ethernet frames between simulation and Linux network stack

• We can capture such frames (and waveforms) and study them

Simulation with
Synopsys VCS.
XGMII interface
directly from 10G
MAC

Transport

Network

Data Link

Physical

Transport

Network

Physical

Application

Ethernet frames

VCS

H
D

L
si

m
ul

at
io

n

XGMII interface

TAP
device

Capture and ana-
lyze packets, are
they malformed?
Are the RoCE
parameters sent
correctly?

23rd October 2024 Front-End RDMA Over Converged Ethernet 7

Real-time Firmware Simulation
Start form Alex Forencich network stack. Functionalities and features must be understood: real-time firmware
simulation with real network traffic.

• Works on Linux machines: Tun/Tap devices

• It makes use of DPI-C interface of SystemVerilog: C code in our testbench!

• Tap device exchanges raw ethernet frames between simulation and Linux network stack

• We can capture such frames (and waveforms) and study them

Simulation with
Synopsys VCS.
XGMII interface
directly from 10G
MAC

Transport

Network

Data Link

Physical

Transport

Network

Physical

Application

Ethernet frames

VCS

H
D

L
si

m
ul

at
io

n

XGMII interface

TAP
device

Capture and ana-
lyze packets, are
they malformed?
Are the RoCE
parameters sent
correctly?

23rd October 2024 Front-End RDMA Over Converged Ethernet 7

Real-time Firmware Simulation
Start form Alex Forencich network stack. Functionalities and features must be understood: real-time firmware
simulation with real network traffic.

• Works on Linux machines: Tun/Tap devices

• It makes use of DPI-C interface of SystemVerilog: C code in our testbench!

• Tap device exchanges raw ethernet frames between simulation and Linux network stack

• We can capture such frames (and waveforms) and study them

Simulation with
Synopsys VCS.
XGMII interface
directly from 10G
MAC

Transport

Network

Data Link

Physical

Transport

Network

Physical

Application

Ethernet frames

VCS

H
D

L
si

m
ul

at
io

n

XGMII interface

TAP
device

Capture and ana-
lyze packets, are
they malformed?
Are the RoCE
parameters sent
correctly?

23rd October 2024 Front-End RDMA Over Converged Ethernet 7

Real-time Firmware Simulation
Start form Alex Forencich network stack. Functionalities and features must be understood: real-time firmware
simulation with real network traffic.

• Works on Linux machines: Tun/Tap devices

• It makes use of DPI-C interface of SystemVerilog: C code in our testbench!

• Tap device exchanges raw ethernet frames between simulation and Linux network stack

• We can capture such frames (and waveforms) and study them

Simulation with
Synopsys VCS.
XGMII interface
directly from 10G
MAC

Transport

Network

Data Link

Physical

Transport

Network

Physical

Application

Ethernet frames

VCS

H
D

L
si

m
ul

at
io

n

XGMII interface

TAP
device

Capture and ana-
lyze packets, are
they malformed?
Are the RoCE
parameters sent
correctly?

23rd October 2024 Front-End RDMA Over Converged Ethernet 7

Real-time Firmware Simulation
Start form Alex Forencich network stack. Functionalities and features must be understood: real-time firmware
simulation with real network traffic.

• Works on Linux machines: Tun/Tap devices

• It makes use of DPI-C interface of SystemVerilog: C code in our testbench!

• Tap device exchanges raw ethernet frames between simulation and Linux network stack

• We can capture such frames (and waveforms) and study them

Simulation with
Synopsys VCS.
XGMII interface
directly from 10G
MAC

Transport

Network

Data Link

Physical

Transport

Network

Physical

Application

Ethernet frames

VCS

H
D

L
si

m
ul

at
io

n

XGMII interface

TAP
device

Capture and ana-
lyze packets, are
they malformed?
Are the RoCE
parameters sent
correctly?

23rd October 2024 Front-End RDMA Over Converged Ethernet 7

Real-time Firmware Simulation
Start form Alex Forencich network stack. Functionalities and features must be understood: real-time firmware
simulation with real network traffic.

• Works on Linux machines: Tun/Tap devices

• It makes use of DPI-C interface of SystemVerilog: C code in our testbench!

• Tap device exchanges raw ethernet frames between simulation and Linux network stack

• We can capture such frames (and waveforms) and study them

Simulation with
Synopsys VCS.
XGMII interface
directly from 10G
MAC

Transport

Network

Data Link

Physical

Transport

Network

Physical

Application

Ethernet frames

VCS

H
D

L
si

m
ul

at
io

n

XGMII interface

TAP
device

Capture and ana-
lyze packets, are
they malformed?
Are the RoCE
parameters sent
correctly?

23rd October 2024 Front-End RDMA Over Converged Ethernet 7

Real-time Firmware Simulation
Start from ETH network stack entirely developed in HLS. Functionalities and features must be understood:
real-time firmware simulation with real network traffic.

• Works on Linux machines: Tun/Tap devices
• It makes use of DPI-C interface of SystemVerilog: C code in our testbench!
• Tap device exchanges raw ethernet frames between simulation and Linux network stack
• We can capture such frames and study them

Simulation with
Synopsys VCS.
XGMII interface
directly from 10G
MAC

Transport

Network

Data Link

Physical

Transport

Network

Data Link

Physical

Application

Ethernet frames

VCS
H

D
L

si
m

ul
at

io
n

XGMII interface

TAP
device

S
of

t-R
oC

E

Soft-RoCE used to
capture and store in
memory data sent.
Enable fast verifi-
cation of the stack
without going
through sythe-
sis/implementation
every time.

Once the stack has been verified, firmware can be eventually built (Resources? Performances? Is timing closure
reached?)

23rd October 2024 Front-End RDMA Over Converged Ethernet 8

RoCE
RoCEv2 is a complex protocol, but not all its features are required for this project. RoCE supports many
operations such as: RDMA SEND, RDMA WRITE, RDMA READ, ATOMIC OPERATIONS.

RoCEv2
Receiver

RoCEv2
Transmitter

Define:
QPs
PD

R key

SYNC

addr + rkey

ACK

Write Data

Check data
in buffers

END

Get
QP info

ACK

ACK

Send
ACKs

La
te

nc
y

Th
ro

ug
ht

pu
t

data
first

middle

last

SYNC and END∗ messages are
outside the RoCE protocol

∗RDMA WRITE IMMEDIATE command exists that trigger a com-
pletion message upon finishing.

The goal is only to push data and initiate the RDMA transfer, for this reason only RDMA WRITE is considered.

23rd October 2024 Front-End RDMA Over Converged Ethernet 9

What was added to the stack
Some new modules has been designed:

• ICRC module:
• For 10/25G we need to compute CRC32 for 64b data words at 156.25 MHz or 390.625 MHz. Module that compute FCS was sligthly

modified and used.
• New module for 100G, parallel computation is needed here. CRC computed for 512b data words at 322.266 MHz, not that easy.

• Added RoCE TX module:
• Supports RDMA WRITE and RDMA WRITE WITH IMMEDIATE operations
• FSM to correctly split AXI data stream in RDMA WRITE ONLY, FIRST, MIDDLE or LAST, based on the selected PMTU

Eth L2
Header

IP
Header

IB BTH
PSN, QP, OpCode

IB Payload ICRC FCSUDP
Header

Type

RDMA WRITE
IB RETH

Vaddr, R_key, length

14 Bytes 20 Bytes 8 Bytes 12 Bytes 16 Bytes 0 / PMTU Bytes 4 Bytes 4 Bytes

IMMD

4 Bytes

• Added RoCE RX module:
• Only RDMA ACK packets are decoded
• Used for latency and throughput measurements

• Added a very rough way to exchange QP info via UDP:
• PC create a QP and sends its info via a UDP packet
• FPGA receive this packet and sets the QP parameters in the FPGA registers

23rd October 2024 Front-End RDMA Over Converged Ethernet 10

RoCEv2 FPGA stack

Work based on Alex Forencich UDP/IP network stack with some minor modifications. (e.g. RoCEv2 requires
the UDP checksum to be set to 0).

IP
complete

RoCEv2 TX
only

MAC
ICRC

UDP complete

RX

TX IP RX
ARP

ICRC UDP RX

UDP TX
Checksum

IP RX

Speed Datapath CLK Frequency
10G 64b 156.250 MHz
25G 64b 390.625 MHz
100G 512b 322.266 MHz

100G speed requires new ICRC module to
cope with the higher bitwidth and high
clock frequency.

• Data is transferred between modules using AXI4-Stream interface.

• ICRC not computed at the RX side, but we have the logic to discard packet with bad ICRC. Added to TODO list :)

• UDP checksum completely disabled, need to re-enabled it if UDP only payload is sent.

23rd October 2024 Front-End RDMA Over Converged Ethernet 11

RoCEv2 TX diagram

RDMA data transfer is not as straight forward as a UDP/IP one!

• QP created at the server side

• QP info sent via UDP to the
FPGA

• FPGA can start sending data

• Notify somehow the server the
end of transfer

• Latency and Throughput
measured with the PSN of the
sent packet and received ACK

• Without re-transmission, if a
packet is not received properly
the connection must be closed.
Need a lossless network!

RoCE
TX

RoCE RX
ACK check

Header
FSM

DATA
Stream

QP State

Connection
Manager

As first test, simple counters sent as data payload, easy to check them at the server’s buffer.

23rd October 2024 Front-End RDMA Over Converged Ethernet 12

Throughput and Latency point-to-point
Tests were performed at 10G and 25G, with a PMTU of 4096B.

• FPGA connected to the NIC through a switch, only two endpoints

• Latency and throughput evaluated thanks to the ACK packet received

Speed Msg.size Latency Tot. Throughput
[kB] [µs] [Gbps]

10G 262 4.6 9.64
25G 262 5.0 24.10
100G - - -

Test done where the latency and throughput
plateau. Theoretical max throughput is 98.5% with
PMTU=4096 or 97.1% with PMTU=2048 of the maxi-
mum speed available (headers 14+20+8+12+16+4+4
Bytes).

VCU118 (VU9P)

MELLANOX Connect-X

23rd October 2024 Front-End RDMA Over Converged Ethernet 13

Throughput and Latency with congestion
Tests were performed at 10G and 25G, with a PMTU of 4096B.

• All participants set at the same speed (10G or 25G), forcing congestion on the receiver Connect-X

• Pause frames sent to stall the TX stream, latency will increase

• Total throughput should not change to the point-to-point test

MELLANOX Connect-X

VCU118 (VU9P)

MELLANOX Connect-X

Speed Msg.size Latency Tot. Throughput
[kB] [µs] [Gbps]

10G 262 13.2 9.63
25G 262 20.0 24.09
100G - - -

23rd October 2024 Front-End RDMA Over Converged Ethernet 14

Summary and Outlook
Summary

• Developed a dynamic simulation

• Written a simplified RoCE transmitter in verilog

• Used dynamic-simulation to test the new code

• Implemented and evaluated stack at 10/25G speeds

IP
complete

RoCEv2 TX
only

MAC
ICRC

UDP complete

RX

TX IP RX
ARP

ICRC UDP RX

UDP TX
Checksum

IP RX

Outlook

• Finalize and optimize stack at 100G

• Explore other QoS feature that RoCEv2 has, e.g. ECN

• Deploy the light-RoCE in a Microchip FPGA, targeting
10G speed

RNIC/FPGA

Transport protocol
driver

Socket

Application

RDMA
stream

B
uffer

23rd October 2024 Front-End RDMA Over Converged Ethernet 15

Summary and Outlook
Summary

• Developed a dynamic simulation

• Written a simplified RoCE transmitter in verilog

• Used dynamic-simulation to test the new code

• Implemented and evaluated stack at 10/25G speeds

IP
complete

RoCEv2 TX
only

MAC
ICRC

UDP complete

RX

TX IP RX
ARP

ICRC UDP RX

UDP TX
Checksum

IP RX

Outlook

• Finalize and optimize stack at 100G

• Explore other QoS feature that RoCEv2 has, e.g. ECN

• Deploy the light-RoCE in a Microchip FPGA, targeting
10G speed

RNIC/FPGA

Transport protocol
driver

Socket

Application

RDMA
stream

B
uffer

23rd October 2024 Front-End RDMA Over Converged Ethernet 15

BACKUP

23rd October 2024 Front-End RDMA Over Converged Ethernet 16

RoCEv2 operations

Four different connection types Multiple message types

Type ACK/NAK protocol Private

RC Yes Yes

UC No Yes

RD Yes No

UD No No

• RDMA WRITE

• SEND

• RDMA READ

• ATOMIC

Eth L2
Header

IP
Header

IB BTH
PSN, QP, OpCode

IB Payload ICRC FCSUDP
Header

Type

RDMA WRITE
IB RETH

Vaddr, R_key, length

14 Bytes 20 Bytes 8 Bytes 12 Bytes 16 Bytes 0 / PMTU Bytes 4 Bytes 4 Bytes

IMMD

4 Bytes

23rd October 2024 Front-End RDMA Over Converged Ethernet 17

CRC32 operation

CRC32 computation can be seen as matrix multi-
plication:

CRC = M × (I + S)

CRC32_D32

CRC SEED [31:0]

INPUT [31:0]

CRC out [31:0]

M

IN
P

U
T

C
R

C
 S

E
E

D

C
R

C
 O

U
T

Where

• M is the matrix related to the CRC computation (generated form the polynomial)

• I is the 32-bit input

• S is the CRC seed or initial value (usually set to 0xFFFFFFFF)

• × is the AND operation

• + is the XOR operation

23rd October 2024 Front-End RDMA Over Converged Ethernet 18

CRC32 operation


a00 a01 · · · a031
a10 a11 · · · a131
...

...
a310 a311 · · · a3131

×


b0
b1
...

b31

 =


c0
c1
...
c31


ci = ai0 ∧ b0 ⊕ ai1 ∧ b1 ⊕ · · · ⊕ ain ∧ bn =

31∑
k=0

aik ∧ bk

Where the matrix is generated starting from the polynomyal, endianess and shift direction

23rd October 2024 Front-End RDMA Over Converged Ethernet 19

CRC32 operation
Now if we start applying the operation to subsequent 32-bit data we obtain the diagram below.

Single
CRC32 operation

M x (I+S)

Input
[31:0]

CRC seed

Single
CRC32 operation

M x (I+S)

Input
[63:32]

Single
CRC32 operation

M x (I+S)

Input
[511:480]

Out
I stage

Out
II stage

Out
Last stage

CRC32
result

23rd October 2024 Front-End RDMA Over Converged Ethernet 20

CRC32 operation
For example let’s consider the computation for a 64-bit data:

CRCtot = M × (M × (I0 + S) + I1)

Where
• M is the CRC32 matrix
• I0 and I1 are the 32-bit data slices
• S is the CRC seed, usually set to 0xFFFFFFFF

Expanding the product:

CRCtot = M × (M × (I0 + S) + I1) = M(2) × I0 +M(1) × I1 +M(2) × S

Now for a 512-bit data vector

CRCtot = M × I15 +M(2) × I14 +M(3) × I13 + · · ·+M(16) × I0 +M(16) × S

Or written in a shorter manner:

CRCtot =

 15∑
(i=0)

M(i+1) × I15−i

+M(16) × S

23rd October 2024 Front-End RDMA Over Converged Ethernet 21

CRC32 operation parallel

16th
CRC32 operation

M^(16) x (I)

Input
[31:0]

CRC seed

15th
CRC32 operation

M^(15) x (I)

Input
[63:32]

1st
CRC32 operation

M^(1) x (I)

Input
[511:480]

CRC32
result

16th
CRC32 operation

M^(16) x (S)

XOR

23rd October 2024 Front-End RDMA Over Converged Ethernet 22

CRC implementation
With the last equation we can pre-compute the various matrices and apply them to the various slices.
The final result will be simply the XOR of the results.
Such computation can be pipelined to achieve the ∼ 322 MHz target frequency.
In the design 3 stages were used 1, possibility to stream with different keep values (still need to be
multiple of 32).

16th
CRC32 operation

M^(16) x (I)

Input
[31:0]

CRC seed
[31:0]

15th
CRC32 operation

M^(15) x (I)

Input
[63:32]

Input
[511:480]

Partial
CRC32

Seed
CRC32 operation

M^(16) x (S)

XOR XOR

1st
CRC32 operation

M x (I)

CRC32 result

If not
first

frame

0XFFFFFFFF

First FF stage Second FF stage Third FF stage

i-esim
CRC32 operation

M^(i) x (I)

1Matrix multiplications with data slices, XOR, XOR with CRC SEED result

23rd October 2024 Front-End RDMA Over Converged Ethernet 23

Matrix-Matrix multiplication

The generating matrix to the nth power is obtained with the matrix-matrix multiplication applied n
times. 

a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn

×


b11 b12 · · · b1p
b21 b22 · · · b2p
...

...
. . .

...
bn1 bn2 · · · bnp

 =


c11 c12 · · · c1p
c21 c22 · · · c2p
...

...
. . .

...
cm1 cm2 · · · cmp


cij = ai1 ∧ b1j ⊕ ai2 ∧ b2j ⊕ · · · ⊕ ain ∧ bnj =

n∑
k=1

aik ∧ bkj

This computation is done in VHDL, where the matrices are computed at compile time.

23rd October 2024 Front-End RDMA Over Converged Ethernet 24

