### Allocating Carbon Costs to Computing Payloads across Heterogeneous Infrastructures.



**Speaker: Dr Alex Owen** 

r.a.owen@qmul.ac.uk

**CHEP 2024-10** 







#### **Allocating Carbon Costs to Payloads**



Alex Owen (QMUL) Jon Hays (QMUL)

Daohai Li (QMUL) Alex DIbbo (STFC)

https://doi.org/10.5281/zenodo.10966001

KAN





Science and Technology Facilities Council

Scientific Computing



#### Allocating Carbon Costs to Payloads



https://doi.org/10.5281/zenodo.10966001









# iris Carbon Mapping Project

|         | Scope 2 – Energy                                         | Scope 3 – Carbon                                                                                                |
|---------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Payload | $E_p = E_f^t \cdot \frac{R_p}{R_f} \cdot \frac{t_p}{t}$  | $C_{ep} = \frac{R_p}{R_f} \cdot t_p \cdot Q_{ef}$<br>Where:<br>$Q_{ef} = \sum_{x=1}^{items} \frac{C_{ex}}{T_x}$ |
| Idle    | $E_{idle}^{t} = E_{f}^{t} - \sum_{p=1}^{payloads} E_{p}$ | $C_{e\ idle}^{t} = t \cdot Q_{ef} - \left(\sum_{p=1}^{payloads} \right)$                                        |

Table 1: Summary of the Simple Payload Model showing allocations of Scope 2 energy and Scope 3 carbon to user payloads and the remaining idle allocation to the provider.

### **Simple Payload Model**

### **Apportion by Real Time**



| Input    | Description                                                   |
|----------|---------------------------------------------------------------|
| $E_f^t$  | Facility Energy usage over an accounting period               |
| ,        | (including cooling) could be estimated from PDU readings      |
|          | multiplied by PUE                                             |
| t        | Duration of accounting period                                 |
| $t_p$    | Elapsed time of a payload (Wall clock)                        |
| $R_p$    | Resource slots allocated to job (eg CPU's)                    |
| $R_f$    | Total slots available at facility                             |
| $C_{ex}$ | Inventory Entry: Embedded carbon of each item x in facility   |
| $T_{x}$  | Inventory Entry: expected lifetime of each item x in facility |
|          |                                                               |

Table 2: Summary of the inputs needed to evaluate the Simple Payload Model.





# iris Carbon Mapping Project

|         | Scope 2 - Energy                                                                                                                                                                     | Scope 3 - Carbon                                                                                                |
|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Payload | $E_{p} = P_{f}^{idle} \cdot \frac{R_{p}}{R_{f}} \cdot t_{p} + P_{slot}^{CPU} \cdot t_{p}^{CPU}$<br>Where:<br>$P_{slot}^{CPU} = \frac{E_{f}^{t} - P_{f}^{idle} \cdot t}{t_{f}^{CPU}}$ | $C_{ep} = \frac{R_p}{R_f} \cdot t_p \cdot Q_{ef}$<br>Where:<br>$Q_{ef} = \sum_{x=1}^{items} \frac{C_{ex}}{T_x}$ |
| Idle    | $E_{idle}^{t} = E_{f}^{t} - \sum_{p=1}^{payloads} E_{p}$                                                                                                                             | $C_{eidle}^{t} = t \cdot Q_{ef} - \left(\sum_{p=1}^{payloads} C_{ep}\right)$                                    |

Table 3: Summary of the Enhanced Payload Model showing allocations of Scope 2 energy and Scope 3 carbon to user payloads and the remaining idle allocation to the provider

### **Enhanced Payload Model**





## iris Carbon Mapping Project **Testing the Payload Models for Batch**

#### **Idle Power**



-intercept gives the idle power of a node  $P_{idle} \approx 137.1W$ .

| User           | Simple Payload Model | Enhanced Payload Model |
|----------------|----------------------|------------------------|
|                | kWh                  | kWh                    |
| prdatl         | 1204.79              | 1191.95                |
| pillhcb        | 159.08               | 242.24                 |
| pilcms         | 76.83                | 71.28                  |
| pilatl         | 48.86                | 51.58                  |
| Pilmoe         | 10.75                | 16.86                  |
| Pildune        | 2.46                 | 0.61                   |
| Others         | 0.08                 | 0.04                   |
| Sub total      | 1502.86              | 1574.57                |
| Idle(provider) | 94.14                | 22.43                  |
| Total          | 1597                 | 1597                   |

Table 10: Results of evaluating the Simple and Enhanced Payload models on QMUL batch payloads the 24 hour period of 2024-03-07.

| Input              | Value    | Slurm name        | Description                         |
|--------------------|----------|-------------------|-------------------------------------|
| $E_f^t$            | 1597 kWh | -                 | Facility Energy usage.              |
| ,                  |          |                   | In this four rack example the PDU   |
|                    |          |                   | cumulative energy readings were     |
|                    |          |                   | to calculate this.                  |
| $P_f^{idle}$       | 16.45 kW | -                 | Idle power draw of the facility.    |
|                    |          |                   | In this example the 137.1W per r    |
|                    |          |                   | was multiplied by 120 nodes.        |
| t                  | 86400 s  | -                 | Duration of accounting period. In   |
|                    |          |                   | case 24 hours.                      |
| $t_f^{CPU}$        | -        | $\sum Total CPII$ | Total CPUtime delivered by the f    |
| ,                  |          |                   | during the accounting period. Sur   |
|                    |          |                   | the TotalCPU figures for all payle  |
| $t_p$              | -        | Elapsed           | Elapsed time of a payload (Wall of  |
| $t_p^{CPU}$        | -        | TotalCPU          | CPUtime of a payload                |
| $Slots_p$          | -        | AllocCPUS         | Resource slots allocated to job (eg |
|                    |          |                   | CPU's)                              |
| Slots <sub>f</sub> | 11520    | -                 | Total slots available at facility.  |
| ,                  |          |                   | In this case 120 nodes with 96 co   |
|                    |          |                   | each.                               |

Table 9: Measured and derived constants and Slurm accounting data names used to evaluate the payload models for QMUL batch payloads.

#### **Works for Batch!**





### iris Carbon Mapping Project Testing the Payload Models for Cloud

#### Works for Cloud too!

| User           | Simple Payload Model |  |
|----------------|----------------------|--|
|                | kWh                  |  |
| Project 1      | 51.51                |  |
| Project 2      | 31.52                |  |
| Project 3      | 25.07                |  |
| Project 4      | 18.22                |  |
| Project 5      | 17.61                |  |
| Project 6      | 12.89                |  |
| Others         | 94.00                |  |
| Sub total      | 250.82               |  |
| Idle(provider) | 173.44               |  |
| Total          | 424.26               |  |

| Input   | Value   | Prometheus name                | Description                             |
|---------|---------|--------------------------------|-----------------------------------------|
| $E_f^t$ | 424.26  | -                              | Facility Energy usage, derived from     |
|         | kWh     |                                | "node_hwmon_power_average_watt"         |
|         |         |                                | and our accounting period t on all      |
|         |         |                                | nodes.                                  |
| t       | 72000   | -                              | Duration of accounting period. In this  |
|         | seconds |                                | case 20 hours.                          |
| $t_n$   | -       | -                              | Elapsed time of a VM (Wall clock)       |
|         |         |                                | during our accounting period, as        |
|         |         |                                | inferred by the VM's "launched_at" and  |
|         |         |                                | "terminated_at" time from OpenStack.    |
| $R_{p}$ | -       | openstack_nova_vcpus_used      | Resource slots allocated to VM (eg      |
| F       |         |                                | CPU's)                                  |
| $R_f$   | ?       | openstack_nova_vcpus_available | Total slots available at facility.      |
|         |         |                                | In this case number of all vcpus on all |
|         |         |                                | the nodes.                              |

Table 13: Measured and derived constants and Prometheus accounting data names used to evaluate the simple payload model for STFC Cloud payloads.

### Simple does...

#### Enhanced should too...







Table 5: Summary of the Simple Storage Model showing allocations of Scope 2 energy and Scope 3 carbon to user storage use and the remaining allocation to the provider.

### Simple Storage Model

## iris Carbon Mapping Project

### Apportion by quota

| Input              | Description                                               |
|--------------------|-----------------------------------------------------------|
| $E_s^t$            | Storage Energy usage over an accounting period            |
|                    | (including cooling) could be estimated from PDU readings  |
|                    | multiplied by PUE                                         |
| S <sub>user</sub>  | Storage capacity allocated to a user                      |
| S <sub>total</sub> | Total storage capacity of the storage subsystem           |
| t                  | Duration of accounting period                             |
| C <sub>ex</sub>    | Inventory Entry: Embedded carbon of each storage item x   |
| $T_x$              | Inventory Entry: expected lifetime of each storage item x |
|                    |                                                           |

Table 6: Summary of the inputs needed to evaluate the Simple Storage Model.



# iris Carbon Mapping Project



Table 7: Summary of the Enhanced Storage Model showing allocations of Scope 2 ener storage use and the remaining allocation to the provider.

#### **Enhanced Storage Model**

| le.+) | $B_{user}$                             |       |
|-------|----------------------------------------|-------|
| - ()  | $\overline{\Sigma_{u=1}^{all\_users}}$ | $B_u$ |

### **Apportion idle** by quota

#### **Apportion active** by use fraction

### **Know your idle power?**

#### **Know your bytes?**

| <i>x</i>     |                    |                                                                                                                                   |
|--------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------|
|              | Input              | Description                                                                                                                       |
|              | $E_s^t$            | Storage Energy usage over an accounting period                                                                                    |
| rov and Scor |                    | (including cooling) could be estimated from PDU readings<br>multiplied by PUE                                                     |
| igy and ooop | P <sup>idle</sup>  | Idle power draw of the storage cluster (including cooling) coul estimated from PDU readings during an idle period multiplied PUE. |
|              | Suser              | Storage capacity allocated to a user                                                                                              |
|              | S <sub>total</sub> | Total Storage capacity of the storage subsystem                                                                                   |
|              | t                  | Duration of accounting period                                                                                                     |
|              | $B_{user}$         | Bytes read from, or written to, a users storage area                                                                              |
|              | $C_{ex}$           | Inventory Entry: Embedded carbon of each storage item x                                                                           |
|              | $T_x$              | Inventory Entry: expected lifetime of each storage item x                                                                         |
|              |                    |                                                                                                                                   |

Table 8: Summary of the inputs needed to evaluate the Enhanced Storage Model.







| User/group  | Quota | kWh   |
|-------------|-------|-------|
| atlas       | 11500 | 588.8 |
| dune        | 1100  | 56.3  |
| belle       | 1000  | 51.2  |
| lhcb        | 300   | 15.4  |
| t2k.org     | 250   | 12.8  |
| fermilab    | 200   | 10.2  |
| other       | 200   | 10.2  |
| Unallocated | 450   | 23.0  |
| Total       | 15000 | 768.0 |

Table 12: Results of evaluating the Simple Storage Model on / QMUL data for the 24 hour period of 2024-03-27

| Input              | Value   | Description                                     |  |
|--------------------|---------|-------------------------------------------------|--|
| $E_s^t$            | 768 kWh | Storage Energy usage over an accounting period  |  |
|                    |         | In this example 5 racks of storage drawing      |  |
|                    |         | 6.4kW/rack for 24 hours.                        |  |
| Suser              | -       | Storage capacity allocated to a user            |  |
| S <sub>Total</sub> | 15 PB   | Total Storage capacity of the storage subsystem |  |
| t                  | 86400 s | Duration of accounting period                   |  |

Ran the numbers of simple model on QMUL Batch Farm

Should also work for Cloud

Need to extract per user usage figures for Enhanced model

### iris Carbon Mapping Project **Testing the Storage Models**

Table 11: Measurements, constants and settings used to evaluate the Simple Storage model.





### Which Payload Model is Best?



Figure 3: Behaviour of the Simple and Enhanced payload models for a fixed amount of work (constant CPUtime) varying with Job Efficiency. Plotted on a log scale.

### Which Storage Mode is Best? -> Can we get bytes read/written?

# iris Carbon Mapping Project

### Not much to choose between them.

### **Both encourage more** efficient code

#### **Enhanced reduces Small Delta Allocation to Providers**









**Speaker: Dr Alex Owen** 

r.a.owen@qmul.ac.uk

**CHEP 2024-10** 

Allocating Carbon Costs to Computing Payloads across Heterogeneous Infrastructures: Final Thoughts...







### Allocating Carbon Costs to Computing Payloads across Heterogeneous Infrastructures.



**Speaker: Dr Alex Owen** 

r.a.owen@qmul.ac.uk

**CHEP 2024-10** 

### **Backup Slides**











Planning now for ~£3M over **3** years starting ~Jan 2025



# **UKRI Delivery Project**

https://eng.ox.ac.uk/netdrive



Alex Owen (QMUL) Jon Hays (QMUL)

### Motivation: How should IRIS work towards NetZero DRI?

### **Allocate Carbon Costs to User Payloads**

### **Reporting Requirements**





## iris Carbon Mapping Project

Daohai Li (QMUL) Alex DIbbo (STFC)

### **Outline Delivery Roadmap**





Science and Technology **Facilities Council** 

Scientific Computing





### iris Carbon Mapping Project **Reporting Requirements / Concerns**

#### Federation

**Carbon costs of IRIS activity/providers** broken down into scope 2 and scope 3.

**Carbon costs of IRIS supported projects** broken down into scope 2 and scope 3.

Carbon saved by being a federation

**Reporting upwards:** 

**Benefit realisation, infrastructure efficiency Demonstrate right mix of platforms/tech** Value of heterogeneity in the federation

**Present success while continuing research Power used per hepspec Fossil power used per hepspc** 

Try to lead the narrative

Carbon costs of a provider's service broken down by scope.

Allocate service carbon cost to users and idle/provider

**Ease of implementation** 

Allocate maximum to users (minimum to idle/provider)

### **Providers**

Users

**Energy per job** 

**Average IRIS Carbon Intensity** 

**Average Embedded carbon factor** 

Try to avoid motivating behaviour that increase federation carbon costs.









### Outline Roadmap

| ID | Action                                                                                                                    |
|----|---------------------------------------------------------------------------------------------------------------------------|
| 1  | Include energy efficiency and scope 3 carbon considerations into procurements with low weighting                          |
| 2  | Request LCA and scope 3 data from suppliers at procurement                                                                |
| 3  | Increase weighting of energy efficiency and scope 3 carbon considera into procurements                                    |
| 4  | Require LCA and scope 3 data from suppliers at procurement                                                                |
| 5  | Agree a minimum Carbon Inventory schema                                                                                   |
| 6  | Create and maintain the Carbon Inventory                                                                                  |
| 7  | Decide carbon accounting policy for scope 3 write-off/credit if equipred disposed of early or sold as working             |
| 8  | Prepare guidelines on how to optimise lifetime of kit for carbon emiss                                                    |
| 9  | Collect Grid Carbon Intensity for: provider sites, federation average a average.                                          |
| 10 | Publish average federation carbon intensity                                                                               |
| 11 | Share good practice on how real vs apparent AC power measurements<br>the processing of different energy use measurements. |
| 12 | Decide on initial carbon model for payload allocation                                                                     |

https://doi.org/10.5281/zenodo.10966001

## iris Carbon Mapping Project

|        | By whom    | Timeframe |  |
|--------|------------|-----------|--|
|        | Provider   | Now       |  |
|        | Provider   | Now       |  |
| ions   | Provider   | Soon      |  |
|        | Provider   | Later     |  |
|        | Federation | Now       |  |
|        | Provider   | Now       |  |
| ent    | Federation | Now       |  |
| ons    | Federation | Soon      |  |
| d UK   | Fed/Prov   | Now       |  |
|        | Federation | Now       |  |
| effect | Federation | Now       |  |
|        | Federation | Now       |  |

| ID | Action                                                                                                                                           | By whom    | Timeframe |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|
| 13 | Commission an IRIS Carbon Accounting Data Repository: planning and implementation, including data model and data transfer.                       |            | Now       |
| 14 | Evaluate selected model on payloads daily to give user energy feedback                                                                           | Provider   | Now       |
| 15 | Evaluate selected model on payloads monthly to report sum of payload<br>energies and idle energy and apportioned embedded carbon costs           | Prov/Fed   | Now       |
| 16 | Collect monthly returns of data from providers to IRIS Carbon Accounting Data Repository                                                         | Federation | Now       |
| 17 | Commission reporting portal to provide the identified reports to federation, providers, and users.                                               | Federation | Now       |
| 18 | Commission reporting to users of payload energy usage and average federation carbon intensity.                                                   | Federation | Now       |
| 19 | Additional tools for user code optimisation such as energy benchmark tools<br>and the addition of profiling queues to services run by providers. | Fed/Prov   | Soon      |
| 20 | Find or commission an energy benchmark for providers to run on compute nodes and keep results in inventory                                       | Federation | Soon      |
| 21 | Survey GPU energy monitoring frameworks and plan how to add accelerators into carbon monitoring models.                                          | Federation | Soon      |
| 22 | Review evidence from under-clocking of accelerators and the effect on carbon emissions.                                                          | Federation | Soon      |
| 23 | Collect additional user carbon reporting needs.                                                                                                  | Users      | Soon      |
| 24 | Plan how to record and report the impact of Green RSE's.                                                                                         | Federation | Now       |
| 25 | Regular review of developments in 'Green Scheduling'.                                                                                            | Federation | Now       |
| 26 | Regular review of UKRU DRI NetZero projects and policy                                                                                           | Federation | Now       |
| 27 | Bid for UKRI DRI NetZero funds                                                                                                                   | ALL        | Now       |
| 28 | Prepare IRIS Carbon Costing Framework for grant proposals                                                                                        | Federation | Now       |







### ECO-Grid Model