
Cache Rules Everything Around Me
Building/testing full-stack containers on each commit

Wouter Deconinck (U. Manitoba)
for the ePIC Collaboration

CHEP 2024 – October 22, 2024

1

Supported in part by NSERC SAPIN-2020-00049, SAPPJ-2021-00026, SAPPJ-2023-00041.

W. Deconinck CHEP24 2

EIC/ePIC Detector: Software and Computing for the 2030s

Build forward-looking team of user-developers to
ensure the long-term success of the EIC/ePIC
scientific program in software & computing.

• Focus on modern scientific computing
practices

• Strong emphasis on modular orthogonal
tools

Integration with HTC/HPC, CI workflows, and
enable use of data-science toolkits.
Avoid “not-invented-here” syndrome, and
instead leverage cutting-edge CERN-supported
software components where possible.

• Build on top of mature, well-supported, and
actively developed software stack.

• Share support burden with upstream
where possible

Actively work with other software stakeholders to
help develop and integrate community tools for
all EIC collaborations.

W. Deconinck CHEP24 3

EIC Software Statement of Principles

Key principles for this talk
• User-centered design: aim to

give every user and use case
an identical environment.
Implementation: containers
built from same packages
definitions using spack.

• Continuous deployment: aim
for always production ready
stack, with testing and
validation before deployment.
Components calver or semver,
with entire stack calver.
Monthly production campaign
sprint targets, rapid feedback
on large event samples.

https://eic.github.io/activities/principles.html

https://eic.github.io/activities/principles.html

W. Deconinck CHEP24 4

The ePIC Software Stack and Key Dependencies: Modular Components

A modular software stack with interdependent components requires more than CI/CD
testing of individual components. We need full-stack testing, validation, benchmarking.

W. Deconinck CHEP24 5

Full-Stack Testing, Validation, Benchmarking Workflow

This workflow is run on every commit
in any component developed by ePIC,
and on every patch/upgrade of external
components.
Requires simulations and reconstruction,
with sufficiently granular caching of
intermediate files to speed up workflow.
Three key phases:

• Build temporary container, push to
registries (tag is sequential id)

• Run testing, validation, benchmarks
inside the temporary container

• Publish testing results to XRootD,
where visualizer pulls artifacts for
comparison (Rucio being rolled out).

W. Deconinck CHEP24 6

Full-Stack Testing, Validation, Benchmarking Workflow
Code change on GitHub Benchmarking on Gitlab Presentation Interface

W. Deconinck CHEP24 7

Containers at the Core of the EIC/ePIC Computing Approach

User-centered design: Present a
consistent software environment to
users, no matter where they interact with
the software stack

• Avoid separate distribution for
interactive analysis computing

• Allow reproducing CI/CD issues on
local development environments

• Allow reproducing production
campaign errors on local system

Following all use same container:
• Interactive day-to-day use on
• Small farm simulations
• Collaboration campaigns
• CI/CD system
• GitHub Codespaces https://github.com/codespaces/new/eic/eic-shell?quickstart=1

https://github.com/codespaces/new/eic/eic-shell?quickstart=1

W. Deconinck CHEP24 8

Spack for Container Building

Spack: A flexible package manager
supporting multiple versions,
configurations, platforms, compilers.
Spec language: variants +, compilers %,
target archs target=x86_64_v3
Environments commonly used in NHEP:
spack env create eic_xl
spack add acts@33.1.0 +edm4hep %clang
spack concretize
spack install --jobs 64
spack buildcache push ghcr

Separation of package details from
environment contents using configs.
Other talks on Spack at CHEP24:
#303: Key4hep / #409: Fermilab

Spack for EIC/ePIC containers:
• System compilers (gcc-12,

direction clang-16 but fortran…)
• Versions and variants defined in

package.yaml, used for multiple
environments (xl, prod, cuda)

• Unified concretization (one version
of installed direct deps, allow for
multiple build deps which are
garbage-collected away)

• Modified spack containerize to
allow for:
－ Cherry-picks against spack repo
－ Addition of downstream repos
－ Two-track builds (see next slide)
－ Historical reasons (once missing

functionality since been added)

https://indico.cern.ch/event/1338689/contributions/6010679/
https://indico.cern.ch/event/1338689/contributions/6010682/

W. Deconinck CHEP24 9

Spack for Container Building

ghcr.io/eic/eic_prod (no interactivity)
spack:

 include:

 - ../concretizer.yaml

 - ../packages.yaml

 specs:

 - dd4hep -ddeve

 - ...

dd4hep:

 require:

 - '@1.30'

 - +ddg4 +ddcad +hepmc3 +utilityapps

 - any_of: [+ddeve, -ddeve]

ghcr.io/eic/eic_xl (full interactivity)
spack:

 include:

 - ../concretizer.yaml

 - ../packages.yaml

 specs:

 - dd4hep +ddeve

 - ...

Allow for specifying versions and variants
in packages.yaml, then pick one
allowed option in spack.yaml.
Additional options not yet in production:
include_concrete to import full envs

http://ghcr.io/eic/eic_prod
http://ghcr.io/eic/eic_xl

W. Deconinck CHEP24 10

Increasing Development Speed: Speeding Up Container Builds

Desire to identify issues with validation and benchmarks rapidly.

• Requires rapid CI/CD turnaround time
• Start actual validation and benchmarks as soon as possible

Speed of container builds is latency driver for start of benchmarking and validation

• Focus on speed up of container build is of primary importance

Strategy:

• Spack build caches for dependencies with unchanged hash (local, S3, OCI)
• ccache for consecutive builds of the same codebase (also for GitHub Actions)

－ Build times now dominated by CMake configuration step, not the actual build
• Container layer caching: aim for small delta layers between updates, when

dependencies are unchanged, but also allow for infrequent dependency changes

W. Deconinck CHEP24 11

spack.lock

Spack for Container Building: Maximizing Layer Reuse, Devel vs. Runtimes

Challenge:
• CUDA (or oneAPI) accelerated stack

while maintaining small runtime
image (spack does not currently
have a CUDA runtime install that
removes CUDA devel)

• Also: unclear licensing when not
using upstream devel and runtime
as base layer

Approach:
• Devel track pushes to build cache;

runtime track not allowed to build
and can only pull from build cache.

Result: consistent devel and runtime
container images (license-compliant).

base image:
devel

base image:
runtime

add:
spack + repos

add:
spack + repos

Default env
concretization

Default env
installation

Default env
concretization

Default env
installation

Delta env
concretization

Delta env
installation

Delta env
concretization

Delta env
installation

spack.lock

Build
cache

Build
cache

final image:
devel

final image:
runtime

In
fre

qu
en

t c
ha

ng
es

Fr
eq

ue
nt

 c
ha

ng
es

e.g.
epic:hash

e.g.
epic:24.10

D
oc

ke
rfi

le

D
oc

ke
rfi

le

D
oc

ke
rfi

le

ccache

ccache

W. Deconinck CHEP24 12

Reuse of Build Caches between Gitlab CI and GitHub Actions

Spack supports multiple binary build cache mechanisms: local, S3 buckets, OCI
layers,... We use a combination of all of them (combined with autopush upon build).

Build cache writing:

• Local build cache, accessed as Dockerfile build mount with
RUN --mount=type=cache,target=/var/cache/spack

• S3 buckets on appliance at BNL (but phasing out)
• OCI layers on local Gitlab registry and on ghcr.io

Build cache reading:

• Local build cache and OCI on local registry are preferred since fastest
• OCI layers on ghcr.io are used for passing build cache products between sites

Seeding of build caches with cloud resources, e.g. buy a 32-core arm cluster for a day.

W. Deconinck CHEP24 13

Triggering of Gitlab CI Pipeline from GitHub Actions with Reporting Back

GitHub is main code repository (publicly accessible, is portfolio for user-developers).

Gitlab is main CI/CD site (dedicated compute resources), but limited to few users.

Challenge: How to synchronize between GitHub and Gitlab (without premium Gitlab)?

Approach:

• Trigger workflow from GitHub Actions with eic/trigger-gitlab-ci
－ Requires Gitlab pipeline trigger token on receiving repository as Actions secret
－ Can pass variables, e.g. GITHUB_PR, GITHUB_SHA, PIPELINE_NAME, …

• Run Gitlab workflow and report back with webhooks to GitHub Actions API
－ Requires GitHub fine-grained token on receiving organization as pipeline secret
－ Report back success/failure to PR, and posts links to artifacts (e.g. geometry viewer)

Management concern: secrets (organization-wide on GitHub, but per repo on Gitlab)

W. Deconinck CHEP24 14

Hashicorp Bakefiles for Encoding of Gitlab vs. GitHub Differences

Bakefiles (.hcl) to control docker builds
• Env vars to control build:

args = [
 SPACK_VERSION =
 try(SPACK_VERSION,“v0.22.2”)
]

• Easy to specify outer products:
tags = [
 for r in regs:
 for t in tags:
 ${r}/eic:${t}
]

• Inheritance of optional targets:
target "default" {
 inherits =
 ["docker-metadata-action"]
}

→ Single Dockerfile: docker bake

Challenges:
• Gitlab CI can push build cache and

containers to private local registry.
• Local developer has read-only

access to public registries, and
usually no local registry.

• Different configuration needed for
different running scenarios, with no
capacity within Dockerfile to resolve.

• Images pushed to multiple repo/tags.
Original approach:

• Extensive use of --build-args
with docker build commands that
differ on Gitlab and GitHub.

• Poor maintainability…

W. Deconinck CHEP24 15

Taking A Step Back: GitHub Actions for CI Testing of Individual Modules

Before system integration testing, we also still run CI tests in GitHub Actions:

• But we use the container environments with all the dependencies installed at the
versions used in the various production environments.

• Using the containers as published on cvmfs.
• For “nightly” versions (all current main/master branches; deployment each 5 hrs).
• For several released tags (backwards compatibility checks)

Only after GitHub Actions checks complete the Gitlab chain gets triggered.

• Containers read from cvmfs using cvmfs-contrib/github-action-cvmfs
－ Typically 20-30s overhead due to installation; speed-up through apt archive caching
－ No cvmfs cache caching yet in downstream workflows, unclear how much this would

speed up; cvmfs still significantly faster than pulling entire container in each job since
only part of the container is needed and cvmfs downloads selectively what is used

• GitHub Actions caching with ccache: 20 minute build in under 2 minutes
(dominated by CMake config)

W. Deconinck CHEP24 16

Validation Workflows: Caching Intermediate Simulations with Snakemake

Validation and benchmarking jobs:
• Event generators: read from XRootD

with local caching on directory
shared between all jobs

• Detector simulation caching:
Snakemake --cache, keyed on
code, parameters and software
environment
－ Rerun when detector geometry or

DD4hep version changes, but not
otherwise

• Event reconstruction caching:
Snakemake --cache, keyed on
configuration and software
environment

Combination of Snakemake and local
caching

Snakemake
cache

Snakemake
cache

Shared
cache

W. Deconinck CHEP24 17

Container Build Latency (reconstruction code changes): 20 minutes

1 hour

W. Deconinck CHEP24 18

Container Build Latency (analysis benchmark changes): 8 minutes

1 hour

W. Deconinck CHEP24 19

Opportunities for Further Improvements

During full rebuilds of packages (not build cache retrievals):

• ccache has sped up the build enough that we now spend most time in the CMake
configuration stages… A challenge shared with the spack project and especially
relevant on systems with high core-count.

During typical builds (one or few packages need rebuild, others are retrieved):

• About 20 minutes to concretize, build, install when only a few minutes of
compilation is expected

• Separation of environment into
－ Layer with dependencies only
－ Layer (default) with latest released versions
－ Layer (delta) with current commit hash versions:

reconcretization of only handful of packages in already constrained environment with
include_concrete

W. Deconinck CHEP24 20

Summary

Takeaways:

• Integrated full-system testing of modular software environments requires
more than is possible in single project continuous integration tests.

• Building full-stack containers for integrated full-system testing, validation, and
benchmarking on every commit is possible, but requires judicious use of
caching strategies.

Ongoing development:

• Upstreaming and documenting of customized functionality into spack (e.g.
containers with custom repositories, two-track builds without layer copy).

• Use of include_concrete and better spack environment layering to avoid the
need to concretize full environments, only reconcretize changed components.

W. Deconinck CHEP24 21

Abstract

The ePIC collaboration is working towards the realization of the first detector at the
upcoming Electron-Ion Collider. As part of our computing strategy, we have settled on
containers for the distribution of our modular software stacks using spack as the
package manager. Based on abstract definitions of multiple mutually consistent
software environments, we build dedicated containers on each commit of every pull
request for the software projects under our purview. This is only possible through
judicious caching from container layers, over downloaded artifacts and binary builds,
down to individual compiled files. These containers are subsequently used for our
benchmark and validation workflows. Our container build infrastructure runs with
redundancy between GitHub and self-hosted GitLab resources, and can take
advantage of cloud-based resources in periods of peak demand. In this talk, I will
discuss our experiences with newer features of spack, including storing build products
as OCI layers and inheritance of previously concretized environments for software
stack layering.

