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EIC/ePIC Detector: Software and Computing for the 2030s

Build forward-looking team of user-developers to 
ensure the long-term success of the EIC/ePIC 
scientific program in software & computing.

• Focus on modern scientific computing 
practices

• Strong emphasis on modular orthogonal 
tools

Integration with HTC/HPC, CI workflows, and 
enable use of data-science toolkits.
Avoid “not-invented-here” syndrome, and 
instead leverage cutting-edge CERN-supported 
software components where possible.

• Build on top of mature, well-supported, and 
actively developed software stack.

• Share support burden with upstream 
where possible

Actively work with other software stakeholders to 
help develop and integrate community tools for 
all EIC collaborations.
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EIC Software Statement of Principles

Key principles for this talk
• User-centered design: aim to 

give every user and use case 
an identical environment. 
Implementation: containers 
built from same packages 
definitions using spack.

• Continuous deployment: aim 
for always production ready 
stack, with testing and 
validation before deployment. 
Components calver or semver, 
with entire stack calver. 
Monthly production campaign 
sprint targets, rapid feedback 
on large event samples.

https://eic.github.io/activities/principles.html

https://eic.github.io/activities/principles.html
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The ePIC Software Stack and Key Dependencies: Modular Components

A modular software stack with interdependent components requires more than CI/CD 
testing of individual components. We need full-stack testing, validation, benchmarking.
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Full-Stack Testing, Validation, Benchmarking Workflow

This workflow is run on every commit 
in any component developed by ePIC, 
and on every patch/upgrade of external 
components.
Requires simulations and reconstruction, 
with sufficiently granular caching of 
intermediate files to speed up workflow.
Three key phases:

• Build temporary container, push to 
registries (tag is sequential id)

• Run testing, validation, benchmarks 
inside the temporary container

• Publish testing results to XRootD, 
where visualizer pulls artifacts for 
comparison (Rucio being rolled out).
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Full-Stack Testing, Validation, Benchmarking Workflow
Code change on GitHub Benchmarking on Gitlab Presentation Interface
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Containers at the Core of the EIC/ePIC Computing Approach

User-centered design: Present a 
consistent software environment to 
users, no matter where they interact with 
the software stack

• Avoid separate distribution for 
interactive analysis computing

• Allow reproducing CI/CD issues on 
local development environments

• Allow reproducing production 
campaign errors on local system

Following all use same container:
• Interactive day-to-day use on 
• Small farm simulations
• Collaboration campaigns
• CI/CD system
• GitHub Codespaces https://github.com/codespaces/new/eic/eic-shell?quickstart=1 

https://github.com/codespaces/new/eic/eic-shell?quickstart=1
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Spack for Container Building

Spack: A flexible package manager 
supporting multiple versions, 
configurations, platforms, compilers.
Spec language: variants +, compilers %, 
target archs target=x86_64_v3
Environments commonly used in NHEP: 
spack env create eic_xl
spack add acts@33.1.0 +edm4hep %clang
spack concretize
spack install --jobs 64
spack buildcache push ghcr

Separation of package details from 
environment contents using configs.
Other talks on Spack at CHEP24:
#303: Key4hep / #409: Fermilab

Spack for EIC/ePIC containers:
• System compilers (gcc-12, 

direction clang-16 but fortran…)
• Versions and variants defined in 

package.yaml, used for multiple 
environments (xl, prod, cuda)

• Unified concretization (one version 
of installed direct deps, allow for 
multiple build deps which are 
garbage-collected away)

• Modified spack containerize to 
allow for:
－ Cherry-picks against spack repo
－ Addition of downstream repos
－ Two-track builds (see next slide)
－ Historical reasons (once missing 

functionality since been added)

https://indico.cern.ch/event/1338689/contributions/6010679/
https://indico.cern.ch/event/1338689/contributions/6010682/
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Spack for Container Building

ghcr.io/eic/eic_prod (no interactivity)
spack:

  include:

  - ../concretizer.yaml

  - ../packages.yaml

  specs:

  - dd4hep -ddeve

  - ...

dd4hep:

    require:

    - '@1.30'

    - +ddg4 +ddcad +hepmc3 +utilityapps

    - any_of: [+ddeve, -ddeve]

ghcr.io/eic/eic_xl (full interactivity)
spack:

  include:

  - ../concretizer.yaml

  - ../packages.yaml

  specs:

  - dd4hep +ddeve

  - ...

Allow for specifying versions and variants 
in packages.yaml, then pick one 
allowed option in spack.yaml.
Additional options not yet in production: 
include_concrete to import full envs

http://ghcr.io/eic/eic_prod
http://ghcr.io/eic/eic_xl
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Increasing Development Speed: Speeding Up Container Builds

Desire to identify issues with validation and benchmarks rapidly.

• Requires rapid CI/CD turnaround time
• Start actual validation and benchmarks as soon as possible

Speed of container builds is latency driver for start of benchmarking and validation

• Focus on speed up of container build is of primary importance

Strategy:

• Spack build caches for dependencies with unchanged hash (local, S3, OCI)
• ccache for consecutive builds of the same codebase (also for GitHub Actions)

－ Build times now dominated by CMake configuration step, not the actual build 
• Container layer caching: aim for small delta layers between updates, when 

dependencies are unchanged, but also allow for infrequent dependency changes
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spack.lock

Spack for Container Building: Maximizing Layer Reuse, Devel vs. Runtimes

Challenge:
• CUDA (or oneAPI) accelerated stack 

while maintaining small runtime 
image (spack does not currently 
have a CUDA runtime install that 
removes CUDA devel)

• Also: unclear licensing when not 
using upstream devel and runtime 
as base layer

Approach:
• Devel track pushes to build cache; 

runtime track not allowed to build 
and can only pull from build cache.

Result: consistent devel and runtime 
container images (license-compliant).

base image: 
devel

base image: 
runtime

add:
spack + repos

add:
spack + repos
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Reuse of Build Caches between Gitlab CI and GitHub Actions

Spack supports multiple binary build cache mechanisms: local, S3 buckets, OCI 
layers,... We use a combination of all of them (combined with autopush upon build).

Build cache writing:

• Local build cache, accessed as Dockerfile build mount with
RUN --mount=type=cache,target=/var/cache/spack

• S3 buckets on appliance at BNL (but phasing out)
• OCI layers on local Gitlab registry and on ghcr.io

Build cache reading:

• Local build cache and OCI on local registry are preferred since fastest
• OCI layers on ghcr.io are used for passing build cache products between sites

Seeding of build caches with cloud resources, e.g. buy a 32-core arm cluster for a day.



W. Deconinck     CHEP24 13

Triggering of Gitlab CI Pipeline from GitHub Actions with Reporting Back

GitHub is main code repository (publicly accessible, is portfolio for user-developers).

Gitlab is main CI/CD site (dedicated compute resources), but limited to few users.

Challenge: How to synchronize between GitHub and Gitlab (without premium Gitlab)?

Approach:

• Trigger workflow from GitHub Actions with eic/trigger-gitlab-ci
－ Requires Gitlab pipeline trigger token on receiving repository as Actions secret
－ Can pass variables, e.g. GITHUB_PR, GITHUB_SHA, PIPELINE_NAME, …

• Run Gitlab workflow and report back with webhooks to GitHub Actions API
－ Requires GitHub fine-grained token on receiving organization as pipeline secret
－ Report back success/failure to PR, and posts links to artifacts (e.g. geometry viewer)

Management concern: secrets (organization-wide on GitHub, but per repo on Gitlab)
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Hashicorp Bakefiles for Encoding of Gitlab vs. GitHub Differences

Bakefiles (.hcl) to control docker builds
• Env vars to control build:

args = [
  SPACK_VERSION = 
    try(SPACK_VERSION,“v0.22.2”)
]

• Easy to specify outer products:
tags = [
  for r in regs:
    for t in tags:
      ${r}/eic:${t}
]

• Inheritance of optional targets:
target "default" {
  inherits = 
    ["docker-metadata-action"]
}

→ Single Dockerfile: docker bake

Challenges:
• Gitlab CI can push build cache and 

containers to private local registry.
• Local developer has read-only 

access to public registries, and 
usually no local registry.

• Different configuration needed for 
different running scenarios, with no 
capacity within Dockerfile to resolve.

• Images pushed to multiple repo/tags.
Original approach:

• Extensive use of --build-args 
with docker build commands that 
differ on Gitlab and GitHub.

• Poor maintainability…
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Taking A Step Back: GitHub Actions for CI Testing of Individual Modules

Before system integration testing, we also still run CI tests in GitHub Actions:

• But we use the container environments with all the dependencies installed at the 
versions used in the various production environments.

• Using the containers as published on cvmfs.
• For “nightly” versions (all current main/master branches; deployment each 5 hrs).
• For several released tags (backwards compatibility checks)

Only after GitHub Actions checks complete the Gitlab chain gets triggered.

• Containers read from cvmfs using cvmfs-contrib/github-action-cvmfs
－ Typically 20-30s overhead due to installation; speed-up through apt archive caching
－ No cvmfs cache caching yet in downstream workflows, unclear how much this would 

speed up; cvmfs still significantly faster than pulling entire container in each job since 
only part of the container is needed and cvmfs downloads selectively what is used

• GitHub Actions caching with ccache: 20 minute build in under 2 minutes 
(dominated by CMake config) 
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Validation Workflows: Caching Intermediate Simulations with Snakemake

Validation and benchmarking jobs:
• Event generators: read from XRootD 

with local caching on directory 
shared between all jobs

• Detector simulation caching:
Snakemake --cache, keyed on 
code, parameters and software 
environment
－ Rerun when detector geometry or 

DD4hep version changes, but not 
otherwise

• Event reconstruction caching:
Snakemake --cache, keyed on 
configuration and software 
environment

Combination of Snakemake and local 
caching

Snakemake 
cache

Snakemake 
cache

Shared
cache
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Container Build Latency (reconstruction code changes): 20 minutes

1 hour
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Container Build Latency (analysis benchmark changes): 8 minutes

1 hour
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Opportunities for Further Improvements

During full rebuilds of packages (not build cache retrievals):

• ccache has sped up the build enough that we now spend most time in the CMake 
configuration stages… A challenge shared with the spack project and especially 
relevant on systems with high core-count.

During typical builds (one or few packages need rebuild, others are retrieved):

• About 20 minutes to concretize, build, install when only a few minutes of 
compilation is expected

• Separation of environment into
－ Layer with dependencies only
－ Layer (default) with latest released versions
－ Layer (delta) with current commit hash versions:

reconcretization of only handful of packages in already constrained environment with 
include_concrete
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Summary

Takeaways:

• Integrated full-system testing of modular software environments requires 
more than is possible in single project continuous integration tests.

• Building full-stack containers for integrated full-system testing, validation, and 
benchmarking on every commit is possible, but requires judicious use of 
caching strategies.

Ongoing development:

• Upstreaming and documenting of customized functionality into spack (e.g. 
containers with custom repositories, two-track builds without layer copy).

• Use of include_concrete and better spack environment layering to avoid the 
need to concretize full environments, only reconcretize changed components.
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Abstract

The ePIC collaboration is working towards the realization of the first detector at the 
upcoming Electron-Ion Collider. As part of our computing strategy, we have settled on 
containers for the distribution of our modular software stacks using spack as the 
package manager. Based on abstract definitions of multiple mutually consistent 
software environments, we build dedicated containers on each commit of every pull 
request for the software projects under our purview. This is only possible through 
judicious caching from container layers, over downloaded artifacts and binary builds, 
down to individual compiled files. These containers are subsequently used for our 
benchmark and validation workflows. Our container build infrastructure runs with 
redundancy between GitHub and self-hosted GitLab resources, and can take 
advantage of cloud-based resources in periods of peak demand. In this talk, I will 
discuss our experiences with newer features of spack, including storing build products 
as OCI layers and inheritance of previously concretized environments for software 
stack layering.


