Cache Rules Everything Around Me

Building/testing full-stack containers on each commit

0 o O A ,ﬂ, I‘I ’ . =
o"’....‘. [' /? :‘ | 78 Y - . - ... R 4 ‘ _
.W/ uter Deconchhltqba) :

(] ' ' forthe ePIC Collaboratign *
' CHEP2024 - Octber22, 2624

Su ﬁ1 ed in part by NSERC SAPIN-2020-00049, SAPPJ-2021-00026, SAPPJ-2023-00041.

EIC/ePIC Detector: Software and Computing for the 2030s

—= infction Gocling Build forward-looking team of user-developers to
— ———— . \ 5 13 MeV Linac to Dump

s K ensure the long-term success of the EIC/ePIC
; 2N\ scientific program in software & computing.
4 2‘\‘\ lectrons . ugom .
/4 A NN E\ « Focus on modern scientific computing
practices

| ccovime + Strong emphasis on modular orthogonal

EIC 18, tools

,/" Integration with HTC/HPC, CI workflows, and
: ., 7 enable use of data-science toolkits.

Avoid “not-invented-here” syndrome, and
instead leverage cutting-edge CERN-supported
software components where possible.

* Build on top of mature, well-supported, and
actively developed software stack.

* Share support burden with upstream
where possible

Actively work with other software stakeholders to
help develop and integrate community tools for
all EIC collaborations.

b\

@ University

o«Manitoba

W. Deconinck CHEP24 2

EIC Software Statement of Principles

EIC SOFTWARE:
Statement of Principles

° We aim to develop a diverse workforce, while also cultivating
an environment of equity and inclusivity as well as a culture of
belonging.

o We will have an unprecedented compute-detector integration:

* We will have a common software stack for online and offline software,
including the processing of streamed data and its time-ordered
structure.

* We aim for autonomous alignment and calibration.

* We aim for a rapid, near-real-time turnaround of the raw data to online
and offline productions.

o We will leverage heterogeneous computing:

* We will enable distributed workflows on the computing resources of the
worldwide EIC community, leveraging not only HTC but also HPC
systems.

* EIC software should be able to run on as many systems as possible,
while supporting specific system characteristics, e.g., accelerators such
as GPUs, where beneficial.

* We will have a modular software design with structures robust against
changes in the computing environment so that changes in underlying
code can be handled without an entire overhaul of the structure.

o We will aim for user-centered design:

* We will enable scientists of all levels worldwide to actively participate in
the science program of the EIC, keeping the barriers low for smaller
teams.

* EIC software will run on the systems used by the community, easily.

* We aim for a modular development paradigm for algorithms and tools
without the need for users to interface with the entire software
environment.

e Our data formats are open, simple and self-descriptive:
* We will favor simple flat data structures and formats to encourage

collaboration with computer, data, and other scientists outside of NP
and HEP.

¢ We aim for access to the EIC data to be simple and straightforward.

o We will have reproducible software:

* Data and analysis preservation will be an integral part of EIC software
and the workflows of the community.

* We aim for fully reproducible analyses that are based on reusable
software and are amenable to adjustments and new interpretations.

o We will embrace our community:

* EIC software will be open source with attribution to its contributors.

* We will use publicly available productivity tools.

* EIC software will be accessible by the whole community.

* We will ensure that mission critical software components are not
dependent on the expertise of a single developer, but managed and
maintained by a core group.

* We will not reinvent the wheel but rather aim to build on and extend
existing efforts in the wider scientific community.

* We will support the community with active training and support sessions
where experienced software developers and users interact with new
users.

* We will support the careers of scientists who dedicate their time and
effort towards software development.

o We will provide a production-ready software stack throughout the

development:

* We will not separate software development from software use and
support.

* We are committed to providing a software stack for EIC science that
continuously evolves and can be used to achieve all EIC milestones.

* We will deploy metrics to evaluate and improve the quality of our
software.

* We aim to continuously evaluate, adapt/develop, validate, and integrate
new software, workflow, and computing practices.

.M/(

https://eic.qithub.io/activities/principles.html

W. Deconinck

CHEP24

Key principles for this talk

User-centered design: aim to
give every user and use case
an identical environment.
Implementation: containers
built from same packages
definitions using spack.
Continuous deployment: aim
for always production ready
stack, with testing and
validation before deployment.
Components calver or semver,
with entire stack calver.
Monthly production campaign
sprint targets, rapid feedback
on large event samples.

Pe University
3 @ o«Manitoba

https://eic.github.io/activities/principles.html

The ePIC Software Stack and Key Dependencies: Modular Components

HepMC3 ROOT

Geant4 CERN CERN

DD4hep PODIO EDM4hep

AIDASoft AIDASoft Key4HEP

JANA2

diab EDMdeic
epic (geometry) ePIC

A modular software stack with interdependent components requires more than CI/CD
testing of individual components. We need full-stack testing, validation, benchmarking.

N
p b\ University
\Y W. Deconinck CHEP24 4 @ o«Manitoba

Full-Stack Testing, Validation, Benchmarking Workflow

3

eic-shell container

ePIC stack

E ePIC geometry

Detector benchmark iiieline

image_browser

Artifacts

This workflow is run on every commit
in any component developed by ePIC,
and on every patch/upgrade of external
components.

Requires simulations and reconstruction,
with sufficiently granular caching of
intermediate files to speed up workflow.

Three key phases:

« Build temporary container, push to
registries (tag is sequential id)

* Run testing, validation, benchmarks
inside the temporary container

« Publish testing results to XRootD,
where visualizer pulls artifacts for

comparison (Rucio being rolled out).
N
b\ University
W. Deconinck CHEP24 5 @ o«Manitoba

Full-Stack Testing, Validation, Benchmarking Workflow

NS

Code change on GitHub
@ Lfhcal geoupdate #4147

I () Summary

Jobs

@ xmllint-before-build

@ list-detector-configs

@ build (gee, g++)

@ build (clang, clang++)
@ xmllint-after-build

@ check-geometry-configs
@ check-tracking-geometry
@ convert-to-gdml

@ convert-to-tgeo

@ convert-to-step

@ dump-constants (epic_craterl...

@ dump-parameter-table (epic_c...

@ check-overlap-tgeo (m, epic_c...

@ check-geometry-full

@ check-overlap-geant4 (epic_cr...
@ check-overlap-geant4-fast (ep...
@ check-overlap-geant4-fast (ep...

@ generate-prim-file (epic_crate...

@ npsim-gun (pi, epic_craterlake)

@ npsim-gun (e, epic_craterlake)

@ npsim-dis (5x41, 1, epic_crater...

—

Benchmarking on Gitlab

Q search or goto

Project

Pinned
Issues
Merge reguests
Pipelines

8 Manage

& Plan

@ Coce

@ Build
Pipelines
Jobs
Pipelne sitor
Pipelne schechles
Atifacts

D secure

@ Deploy

@ Operate

& Monitor

i Anayze

@Hep

EIC / benchmarks | oetector_benchmarks | Pipeines | 103280

eic/detector_benchmarks: pr/no_detector_build

©Fassad. Wouter Deconinck created pipetine for commit sstacs9a 3 3 hours aqo, finished 1 hour ago

For pr/no_gotoctor_buily

g ek, @ 185]0bs ()83 minutes 6 seconds, queued for 2,741 seconds

Pipeline Needs Jobs 185 Tests 0

Groupjobsby [Stage | Job dependencies

benchmarks

s © © benchbo.racker &
© benchibackgrounds emcal backwards (0
© benchbackwards.ecal &
© venchdrich

© benchecal_gaps
© benchecaLbarrel_stectrons.scan

© benchemcal barrel_photons.

© benchencalbarel pi0 &)
© venchencaLbarrel_pion.rejection &
© benchemcalbarrel_pions &)
© benchierich s

© benchca barret
© benchnca baretscan 3
© benchinsert.muon

© venchinsertneutren

© benchmaterialscan <
© benchmrich 3
© venchtrackingperformance &)
© benchiracking_performance_campaigns (&
© benchtracking.performances._dis. &)

© venchzde_benchmark
© bench.zde_lambda <
© benchzde_photon

© benchzde_pio

© benchizde sigma ®

© wacking detectors plt_hits %)

W. Deconinck

collect
© collect resutsbackgrounds

© collsct resutbackuardsecat

© collect resutsbarreleca

© collectresutsbarreLncal

© colisct resutsiecal gaps

© collectresutsnsen.muon

© collsct resutsinsent_nsatren

© collsct resutmateriaLscan

© collectresutspc

© collsctresutstracking perfomance

© colisct resutracking perormance.cam

© co

s tracking_performances_dis
© coliect resuitsizde

© collect results:zdc.lambda

© collectresutszc lyso

© coliect_results:zdc_photon

© collect_results: 2dc._pi0

© colectresuts:zoc.signa

© resutsi0 tracker

CHEP24

Presentation Interface

eH&S Home Physics Detector CI TDR Contact
e

Plot Type = 5Images Sort by

All

Material Scan: eta,phi=0
Material Scan: eta=-2.5, phi=0
Material Scan: eta=2.5, phi=0

Material Scan: eta,phi=0

deploy

© deployre

Material Scan: eta=2.5, phi=0

—> :

Material Scan: eta=-2.5, phi=0

Material Scan: Whole Detector

133

Material Scan: Central Tracking

&
A Plots on this page are automatically generated and are not approved for use in presentations or other documents.

N
@ University

o«Manitoba

Containers at the Core of the EIC/ePIC Computing Approach

User-centered design: Present a
consistent software environment to

users, no matter where they interact with

the software stack

Avoid separate distribution for
interactive analysis computing
Allow reproducing CI/CD issues on
local development environments
Allow reproducing production
campaign errors on local system

Following all use same container:

NS

Interactive day-to-day use on
Small farm simulations
Collaboration campaigns
CI/CD system

GitHub Codespaces

W. Deconinck

L @R Y v oD

®
3

X Codespaces: verbose space goldfish &

/

PhysicsList
PhysicsList
PhysicsList
PhysicsList
PhysicsList

Geant4UI INFO
ngeCut/

Geant4UT INFO
ys/

Geant4ul INFO
1GammaPhys/

eic-shell [Codespaces: verbose space goldfish]

TERMINAL

+++ Dump of physics list component(s)

+++ Extension name FTFP_BERT
+++ Transportation flag: @
+++ Program decays: 0
+++ RangeCut: 0.700000

+++ GlobalRangeCut> Install Geant4 control directory:/ddg4/GlobalRa
+++ CerenkovPhys> Install Geant4 control directory:/ddg4/CerenkovPh

+++ OpticalGammaPhys> Install Geant4 control directory:/ddg4/Optica

G4ChordFinder: stepperDriverId: 2

FieldSetup INFO
FieldSetup INFO
Fieldsetup INFO
FieldSetup INFO
ep 10000.000000 mm

Geant4 magnetic field tracking configured.
G4MagIntegratorStepper:ClassicalRK4 G4Mag_EqRhs:Mag_UsualEqRhs
Epsilon: [min:@.000050 mm max:0.001000 mm]

Delta: [chord:@.250000 1-step:0.010000 intersect:0.001000] LargestSt

Geant4 version Name:

geant4-11-02-patch-02 [MT] (21-June-2024)
Copyright : Geant4 Collaboration
References : NIM A 506 (2003), 250-303
: IEEE-TNS 53 (2006), 270-278
: NIM A 835 (2016), 186-225
WwW : http://geant4.oxrg/

Geant4ul INFO
RunManager /
Geant4RunManager WARN
Geant4Kernel WARN
ation of Geant4.
Geant4Kernel WARN

+++ Geant4RunManager> Install Geant4 control directory:/ddg4/Geant4

+++ Configured run manager of type: G4RunManager.
+++ Multi-threaded mode requested, but not supported by this compil

+++ Falling back to single threaded mode.

G4PhysListFactory: :GetReferencePhysList <FTFP_BERT> EMoption= @
<<< Geant4 Physics List simulation engine: FTFP_BERT

Myphysics INFO
cs list

Registered Geant4 physics constructor G4StepLimiterPhysics to physi

UserInitialization INFO +++ Executing Geant4UserActionInitialization::Build. Context:@xSh
43471€95c@ Kernel:0x5b4347153730 [-1]

Geant4Converter INFO

+++ Successfully converted geometry to Geant4. [2.055 seconds]

ODQmoe
=
(5] GitHub Codespa...
¢ bash

CHEP24

httDs://qithub.com/codespaces/new/eic/eic-shelI?quickég rt=1
B U

niversity
@ o«Manitoba

https://github.com/codespaces/new/eic/eic-shell?quickstart=1

Spack for Container Building

Spack: A flexible package manager /'\ Spack for EIC/ePIC containers:

supporting multiple versions,
configurations, platforms, compilers.

Spec language: variants +, compilers %, .
target archs target=x86_64_v3

Environments commonly used in NHEP:

spack env create eic_xl1

spack add acts@33.1.0 +edmdhep %clang

spack concretize

spack install --jobs 64

spack buildcache push ghcr .

Separation of package details from
environment contents using configs.

Other talks on Spack at CHEP24:
#303: Key4dhep / #409: Fermilab

’
eP'I&j W. Deconinck CHEP24

/. « System compilers (gcc-12,

direction clang-16 but fortran...)
Versions and variants defined in
package.yaml, used for multiple
environments (x|, prod, cuda)
Unified concretization (one version
of installed direct deps, allow for
multiple build deps which are
garbage-collected away)

Modified spack containerize to
allow for:

Cherry-picks against spack repo
Addition of downstream repos

Two-track builds (see next slide)
Historical reasons (once missing

functionality since been added)

D
E University

3 o«Manitoba

https://indico.cern.ch/event/1338689/contributions/6010679/
https://indico.cern.ch/event/1338689/contributions/6010682/

Spack for Container Building

ghcr.io/eic/eic_prod (no interactivity)
spack:

include:

- ../concretizer.yaml

- ../packages.yaml

specs:

- dd4hep -ddeve

dd4hep:
require:
- '01.30'
- +ddg4 +ddcad +hepmc3 +utilityapps

- any_of: [+ddeve, -ddeve]

Pt}

W. Deconinck CHEP24 9

ghcr.io/eic/eic_xl (full interactivity)

spack:

include:

- ../concretizer.yaml
- ../packages.yaml
specs:

- dd4hep +ddeve

Allow for specifying versions and variants
in packages.yaml, then pick one
allowed option in spack.yaml.

Additional options not yet in production:
include_concrete to import full envs

N
E University

o«Manitoba

http://ghcr.io/eic/eic_prod
http://ghcr.io/eic/eic_xl

Increasing Development Speed: Speeding Up Container Builds

Desire to identify issues with validation and benchmarks rapidly.

* Requires rapid CI/CD turnaround time
« Start actual validation and benchmarks as soon as possible

Speed of container builds is latency driver for start of benchmarking and validation
* Focus on speed up of container build is of primary importance
Strategy:

« Spack build caches for dependencies with unchanged hash (local, S3, OCI)

« ccache for consecutive builds of the same codebase (also for GitHub Actions)
— Build times now dominated by CMake configuration step, not the actual build

» Container layer caching: aim for small delta layers between updates, when
dependencies are unchanged, but also allow for infrequent dependency changes

N
p b\ University
\Y W. Deconinck CHEP24 10 @ o«Manitoba

Spack for Container Building: Maximizing Layer Reuse, Devel vs. Runtimes

% , base image: % base image: 8 Challenge'
£ : 2 runtime (o))
[SE ! Q C
8 | | s e « CUDA (or oneAPI) accelerated stack
i add: | add: © while maintaining small runtime
 spack +repos K spack + repos e .
o image (spack does not currently
000 o have a CUDA runtime install that
epic:24.10 sl = removes CUDA devel)
Default env £ . . .
e concretization . Algo. unclear licensing when not
ccache i <tallation — using upstream devel and runtime
erault env
installation as base Iayer
Delta env n Approach:
epic:has R .
concretization Delta env o « Devel track pushes to build cache;
Bl e concretization cs% runtime track not allowed to build
.y : installation Delta env O and can only pull from build cache.
o installati c . .
S| S ¢ Result: consistent devel and runtime
=] U :) :
final image: final image: 3 container images (license compllant\).
devel runtime L b\ University
W. Deconinck CHEP24 1 @ «Manitoba

Reuse of Build Caches between Gitlab Cl and GitHub Actions

Spack supports multiple binary build cache mechanisms: local, S3 buckets, OCI
layers,... We use a combination of all of them (combined with autopush upon build).

Build cache writing:

» Local build cache, accessed as Dockerfile build mount with
RUN --mount=type=cache, target=/var/cache/spack

« S3 buckets on appliance at BNL (but phasing out)

» OCl layers on local Gitlab registry and on ghcr.io

Build cache reading:

» Local build cache and OCI on local registry are preferred since fastest
» OClI layers on ghcr.io are used for passing build cache products between sites

Seeding of build caches with cloud resources, e.g. buy a 32-core arm cluster for a day.

N
p b\ University
\Y W. Deconinck CHEP24 12 % o«Manitoba

Triggering of Gitlab Cl Pipeline from GitHub Actions with Reporting Back

GitHub is main code repository (publicly accessible, is portfolio for user-developers).
Gitlab is main CI/CD site (dedicated compute resources), but limited to few users.
Challenge: How to synchronize between GitHub and Gitlab (without premium Gitlab)?
Approach:

» Trigger workflow from GitHub Actions with eic/trigger-gitlab-ci

— Requires Gitlab pipeline trigger token on receiving repository as Actions secret
— Can pass variables, e.g. GITHUB_PR, GITHUB_SHA, PIPELINE_NAME, ...

* Run Gitlab workflow and report back with webhooks to GitHub Actions API

— Requires GitHub fine-grained token on receiving organization as pipeline secret
— Report back success/failure to PR, and posts links to artifacts (e.g. geometry viewer)

Management concern: secrets (organization-wide on GitHub, but per repo on Gitlab)

N
p b\ University
\Y W. Deconinck CHEP24 13 @ o«Manitoba

Hashicorp Bakefiles for Encoding of Gitlab vs. GitHub Differences

Challenges:

» Gitlab Cl can push build cache and
containers to private local registry.

* Local developer has read-only
access to public registries, and
usually no local registry.

 Different configuration needed for
different running scenarios, with no
capacity within Dockerfile to resolve.

» Images pushed to multiple repo/tags.

Original approach:

» Extensive use of --build-args
with docker build commands that

differ on Gitlab and GitHub.
Poor maintainability...

Pt}

Bakefiles (.hc1) to control docker builds

— Single Dockerfile: docker bake\

W. Deconinck CHEP24

Env vars to control build:
args = |

SPACK_VERSION =
] try(SPACK_VERSION, “v0.22.2")
Easy to specify outer products:
tags = |

for r in regs:

for t in tags:

S{r}/eic:S${t}

Inheritance of optional targets:
target "default" {
inherits =
["docker-metadata-action"]

}

E University

14 o«Manitoba

Taking A Step Back: GitHub Actions for Cl Testing of Individual Modules

Before system integration testing, we also still run Cl tests in GitHub Actions:

» But we use the container environments with all the dependencies installed at the
versions used in the various production environments.

» Using the containers as published on cvmfs.

* For “nightly” versions (all current main/master branches; deployment each 5 hrs).

* For several released tags (backwards compatibility checks)

Only after GitHub Actions checks complete the Gitlab chain gets triggered.

« Containers read from cvmfs using cvmfs-contrib/github-action-cvmfs
— Typically 20-30s overhead due to installation; speed-up through apt archive caching
— No cvmfs cache caching yet in downstream workflows, unclear how much this would
speed up; cvmfs still significantly faster than pulling entire container in each job since
only part of the container is needed and cvmfs downloads selectively what is used
» GitHub Actions caching with ccache: 20 minute build in under 2 minutes

. . SN [niverc
eﬂ@ (d0m|nated by CMake Conflg) W. Deconinck CHEP24 15 ’% gﬁ:l‘;leﬁ?)lﬁg

Validation Workflows: Caching Intermediate Simulations with Shakemake

Event Generators
Shared
cache
:
I

DD4hep/Geant4

Snakemake

cache
Readout Simulation
(Digitization)

PODIO/EDI\MeiCJANAZ/EICrecon

Validation and benchmarking jobs:

Event generators: read from XRootD
with local caching on directory
shared between all jobs

Detector simulation caching:
Snakemake --cache, keyed on
code, parameters and software

environment

— Rerun when detector geometry or
DD4hep version changes, but not
otherwise

Event reconstruction caching:
Snakemake --cache, keyed on
configuration and software
environment

Combination of Snakemake and local

caching N

’
eP'I&j W. Deconinck CHEP24

@ University

o«Manitoba

Container Build Latency (reconstruction code changes): 20 minutes

(D Perfetto

Navigation

a >

x 1 hour

b §

x|

i

1 S eic: [default, debian_sta...

sim:backwards_ecal: [e-, 20GeV]

simbackwards_ecal: [pi-, 16eV]
sim:backwards_ecal: [pi-, 2GeV]
simbackwards_ecal: pi, 5GeV]
I

sim:backwards_ecal: [pi-, 10GeV]
sim:backwards_ecal: [p-, 206eV]

sim:tracking_performance: [pi-, 500MeV]

simutracking_performance: pk, 16eV]

University
W. Deconinck CHEP24

17 o«Manitoba

Container Build Latency (analysis benchmark changes): 8 minutes

(D Perfetto

Navigation

X = Filter tracks.

4021729

rrent Trace Th

ead 4021733

4021734

Convert trace el

sim:backwards_ecal
Thread 402
Thi

Thre sim:backwards_ecal: |

Thread 40218

4021817

2 | Current Selection

University
\Y W. Deconinck CHEP24 18 o«Manitoba

Opportunities for Further Improvements

During full rebuilds of packages (not build cache retrievals):

« ccache has sped up the build enough that we now spend most time in the CMake
configuration stages... A challenge shared with the spack project and especially
relevant on systems with high core-count.

During typical builds (one or few packages need rebuild, others are retrieved):

» About 20 minutes to concretize, build, install when only a few minutes of
compilation is expected

» Separation of environment into
— Layer with dependencies only
— Layer (default) with latest released versions
— Layer (delta) with current commit hash versions:
reconcretization of only handful of packages in already constrained environment with
include_concrete

N
p b\ University
\Y W. Deconinck CHEP24 19 @ o«Manitoba

Summary

Takeaways:

* Integrated full-system testing of modular software environments requires
more than is possible in single project continuous integration tests.

» Building full-stack containers for integrated full-system testing, validation, and
benchmarking on every commit is possible, but requires judicious use of
caching strategies.

Ongoing development:

+ Upstreaming and documenting of customized functionality into spack (e.g.
containers with custom repositories, two-track builds without layer copy).

« Use of include_concrete and better spack environment layering to avoid the
need to concretize full environments, only reconcretize changed components.

N
p b\ University
\Y W. Deconinck CHEP24 20 @ o«Manitoba

Abstract

The ePIC collaboration is working towards the realization of the first detector at the
upcoming Electron-lon Collider. As part of our computing strategy, we have settled on
containers for the distribution of our modular software stacks using spack as the
package manager. Based on abstract definitions of multiple mutually consistent
software environments, we build dedicated containers on each commit of every pull
request for the software projects under our purview. This is only possible through
judicious caching from container layers, over downloaded artifacts and binary builds,
down to individual compiled files. These containers are subsequently used for our
benchmark and validation workflows. Our container build infrastructure runs with
redundancy between GitHub and self-hosted GitLab resources, and can take
advantage of cloud-based resources in periods of peak demand. In this talk, | will
discuss our experiences with newer features of spack, including storing build products
as OClI layers and inheritance of previously concretized environments for software
stack layering.

N
p b\ University
\Y W. Deconinck CHEP24 21 % o«Manitoba

