

USING THE ATLAS EXPERIMENT SOFTWARE ON

HETEROGENEOUS RESOURCES

Johannes Elmsheuser (BNL) on behalf of the ATLAS Collaboration 23 October 2024, CHEP 2024, Kraków, Poland

INTRODUCTION - ATLAS HL-LHC RESOURCE PROJECTIONS

- HL-LHC with increased luminosity, event size and event rates
- Flat computing budgets require R&D efforts to close the projected resource gaps
- CPU projections include no assumptions about GPU usage

- $\cdot\,$ In this presentation, discussion of closing resource gap:
 - ARM CPUs: extra and power efficient resources
 - Cloud computing
 - GPUs
- Note: All accessible with ATLAS full software stack through the ATLAS workflow management system PanDA

ATLAS GRID SETUP: PANDA AND RUCIO

- More details in arxiv:2403.15873
- Dedicated ARM and GPU PanDA queues configured in Computing Resource Information Catalogue (CRIC)
- Full ARM/aarch64 grid setup available with OS container, middleware, Kubernetes etc.
- For NVIDIA GPUs need matching CUDA linux kernel module version and redistributable CUDA libraries

- Pilot Job configuration:
 - Dedicated ARM queue on the CE or using "WantARM=True" in PanDA pilot job jdl
 - Dedicated GPU queue on the CE or using "+RequireGPUs = True" and "+RequestGPUs = 1" in PanDA pilot job jdl
- ATLAS user job submission:
 - Use following options for PanDA job submission tools (prun/pathena): -architecture "&nvidia-*" or -architecture "@el9#aarch64"

USAGE OF ARM IN ATLAS

CIM Coogle Cloud

Last CHEP23 presented "The ATLAS experiment software on ARM" (link) - much has happened since then

- 7 nightly builds with gcc13 for development and production branch and different projects of ATLAS software stack Athena, which are built on 4 build machines provided by CERN IT (Ampere Altra/Neoverse-N1) - nightly and stable releases automatically installed on CVMFS
- Running MC simulation and reconstruction on 5 PanDA queues with up to 15k concurrent job slots
- Configured PanDA queue as extension of US Tier2 in UT Arlington in *Google Cloud* with up to 9.5k job slots

ATLAS is the first WLCG experiment which will accept ARM resources as pledge in 2025/26

- Build flags
 - Using Armv8 defaults (gcc 13.1 allows up to armv9.3-a, gcc docu link)
 - Test builds of Athena/AthenaExternals with clang17 work as well
 - Speed up of Geant4 simulation by 2-3% when using:
 - CXXFLAGS="-march=armv9.2-a -mtune=neoverse-v2" (NVIDIA Grace)
 - CXXFLAGS="-march=armv8.3-a -mtune=neoverse-n1" (Ampere Altra)
 - But code not necessarily portable anymore to all ARM processor versions
- Potential numerical differences
 - Due to different math and/or run time libraries used see StackOverflow link
 - Some fluctuations in physics objects at the level of $(10^{-4} 10^{-6})$

- ATLAS nightlies and stable releases can easily be used for development/execution on Apple Silicon (documentation) using Lima (link)
- What is "Lima" ?
 - Linux Machines, "Lima launches Linux virtual machines with automatic file sharing and port forwarding (similar to WSL2)."
- ATLAS provides automated instructions for container/VM with AlmaLinux 9.4 + HepOSlibs + CMVFS inside the container
 - \rightarrow All ATLAS code accessible via CVMFS and useable with VSCode on user laptop
 - \rightarrow See HepScore23 benchmark on later slide
 - ightarrow Documentation how to reproduce for other experiments at link

- $\cdot\,$ ATLAS is not using GPUs in production for Run3
- Major R&D effort on-going to port parts of simulation, reconstruction and high level trigger code to use GPUs for HL-LHC (see several talks in other sessions at this conference)
- Since March 2024, Athena main branch uses CUDA 12.4 (and later 12.4.1) this version of CUDA supports gcc13 (current production compiler version in ATLAS)
- Parts of CUDA SDK are redistributable (see file list at link) and usage works fine also outside of CERN via CVMFS and PanDA
- N.B. ATLAS HLT group successfully ran fully automated offline reprocessing of Calorimeter topo clustering algorithm on GPUs via PanDA
- But: every PanDA GPU queue/site has to have at least the kernel driver version 550.54.15 (or newer) from CUDA 12.4.1 installed
 → Tedious process in reaching out to sites and asking for CUDA kernel driver version update

 \rightarrow Same process repeats potentially when moving to a new major CUDA version \rightarrow A (automated) procedure should be discussed within WLCG when GPUs are more commonly used on the Grid $^{7/11}$

More detailed overview of PanDA GPU queues (Status September 2024)

PanDA queue name	GPU	GPU	vCPUs	Driver	CUDA	Works
	type	on node	on node			with Athena ?
ANALY_BNL_GPU_ARC	A100				12.2	×
ANALY_INFN-T1_GPU	Tesla K40m	1	1	460.106.00	11.2	old GPU
ANALY_MANC_GPU	Tesla T4	4	1	560.35.03	12.6	
ANALY_OU_OSCER_GPU_TEST	K20	1	1		11.x	old GPU
ANALY_QMUL_GPU	A100 40GB	1	1	550.54.15	12.4	(🖌)
ANALY_SLAC_GPU	A100 40GB	1	1	535.161.07	12.2	×
FZK-LCG2_GPU	V100S 32GB	8	8	555.42.02	12.5	
NERSC_Perlmutter_GPU	A100		8		12.2	×
UKI-LT2-QMUL_GPU	A100 40GB	1	8	550.54.15	12.4	(🖌)
UKI-NORTHGRID-MAN-HEP_GPU	Tesla T4	4	8	560.35.03	12.6	
lxplus-gpu.cern	Tesla T4	1	28	550.90.07	12.4	 ✓

- Scanning CUDA information in simple PanDA jobs with "nvidia-smi"
- GPUs at 2 sites are too old for CUDA 12.4 update
- Require newer CUDA kernel driver version and/or access via grid CE: BNL, SLAC and NERSC
- #GPUs and #CPUs:
 - Right now Athena workflows are foreseen to use 1 GPU
 - Selecting GPU device possible via CUDA_VISIBLE_DEVICES (see e.g. test_trf_athexcuda.sh)
 - Potential future options to explore: GPU device sharing, whole node scheduling

PRMON NVIDIAMON UPDATES

Hardware information:

- CPU: Intel/P) Xeon/P) Silver 4210R CPU @ 2.40GHz, 40 cores, 2 sockets, 10 cores/socket, 2 threads/core, 187.03GB of memory in total
- GPU: Tesia T4, 1500WHz of processor core clock, 15.0GB
- GPU: Tesia T4, 1500WHz of processor core clock, 15.0GB
- GPU: Tesia T4, 1590WHz of processor core clock, 15.0GB
 GPU: Tesia T4, 1590WHz of processor core clock, 15.0GB
- GPU: Tesia T4, 1590WHz of processor core clock, 15.0GB
 GPU: Tesia T4, 1590WHz of processor core clock, 15.0GB
- GPU: Tesia 14, 1560/VHz of processor core clock, 15.0048
 GPU: Tesia 14, 1550/VHz of processor core clock, 15.0088

- ATLAS makes extensive use of the HSF/ATLAS tool prmon (link) to monitor payload resource usage in PanDA
- Example of an Athena HLT reprocessing test job on PanDA at Manchester

- prmon parses text output of nvidia-smi to collect GPUs resources usage and required some recent update
- Reasonable information collection for 1 or 4 GPUs but not for 8 GPUs
- Resource collection only available for NVIDIA - more robust implementation via C-API possible and add support for GPU vendors
 - \rightarrow ideal student project contact the prmon authors !

USING ATHENA ON NVIDIA GRACE HOPPER

prmon plot of memory usage over time for ATLAS HLT reconstruction workflow on Grace Hopper (72 core Arm Neoverse v2 + GH200 GPU)

- Athena HLT reconstruction code ported to GPUs benchmarked on NIVIDA Grace Hopper testbed provided through LBNL
- GPU workflows run out-of-the box on this ARM CPU+GPU testbed (but slower due to missing frontier/squid in this testbed)
- Reliable GPU benchmark needed in future HepScore version - so far only CPUs:

Name	nCPU	HepScore23	HepScore23 per nCPU
HepScore23 reference	64	1018	15.9
Grace Hopper	72	2319	32.2
Apple M2 Air	8	141.4	17.7
Ampere Neoverse-N1	20	349.4	17.5
Intel Xeon E5-2683 v4	16	258.5	16.2

SUMMARY AND CONCLUSIONS

- Summary:
 - Access and support of heterogenous resources will help to address the HL-LHC computing resource challenge
 - ARM is used in ATLAS for MC simulation and reconstruction production and will accept ARM resources as WLCG pledge in 2025/26
 - ATLAS ARM software nightlies and releases on Apple Silicon through Lima containers
 - Extensive R&D program on-going to port workflows to GPUs for HL-LHC
 - $\cdot\,$ Athena workflows with CUDA supported through PanDA on WLCG
- Wishlist:
 - Ease CUDA kernel driver update on WLCG sites
 - GPU benchmark in HepScore

