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Motivation
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Architecture
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NOTED (Network Optimized Transfer of Experimental Data)

An intelligent network controller to improve the throughput of large data transfers in FTS (File
Transfer Services) by handling dynamic circuits or by doing load balance.




Elements

FTS (File Transfer Service):

0 Analyse data transfers to estimate if any action can be applied to optimise the network
utilization — get on-going and queued transfers.

CRIC (Computing Resource Information Catalog):

0 Use the CRIC database to get an overview of the network topology — get IPv4/IPv6
addresses, endpoints, rcsite and federation.
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File Transfer Service

Computing Resource Information Catalog
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Modes of operation

CUSTOM

NOTED is working based on the
parameters written in a config.yaml
file by the network administrator to
monitor FTS data transfers NOTED
(Network Optimized

Transfer of

Experimental Data)

LHCONE

When CERN NMS raises an alarm on an interface
in one of the LHCONE border routers, NOTED
identifies the Tier 2, Tier 3 and starts to monitor
FTS data transfers — automatically!

0 Much more complex for LHCONE since a single path is shared by multiple sites ~ 100.

LHCOPN

When CERN NMS raises an alarm on
an interface in one of the LHCOPN
border routers, NOTED identifies the
Tier 1 and starts to monitor FTS data
transfers — automatically!




NOTED demonstrations




b

:I'ransfers of WLCG sites in LHCONE (1 of August 2022)

Q If throughput > 80 GB/s — NOTED provides a

dynamic circuit. When throughput < 40 GB/s —
i [ . NOTED cancels the dynamic circuit and the traffic is
ﬂ LJJ M/J'V routed back to the default path.

Q0 Observations of NOTED about the network
utilization correspond with the reported ones in
Grafana by LHCONE/LHCOPN production routers.

Therefore, by inspecting FTS data transfers it is
possible to get an understanding of the network
usage and improve its performance by executing an
action in the topology of the network.
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NOTED demO at SC22 (CUSTOM version)
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NOTED looks in FTS for large data
transfers.

. When it detects a large data transfer —

request a dynamic circuit by using the
SENSE/AutoGOLE provisioning system.

. LHCOPN routers at CERN will route

the data transfers over the new dynamic
circuit.

When the large data transfer is
completed — release the dynamic
circuit, the traffic is routed back to the
LHCOPN production link.




NOTED demo at SC22 (custom version)
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NOTED demo at SC23 (LHcopn, LHCONE and custom versions)
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NOTED demo at SC23 (LHcopn, LHCONE and custom versions)

0 Results of 14" November 2023.
0 Data transfers between CH-CERN - CA-TRIUMF through SC23 booth.
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NOTED demo at DC24 (rcopn, LHcoNE versions)
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Machine learning network traffic forecasting




Initial study (presented at CHEP 2021)
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Initial study (presented at CHEP 2021)

0 The CNN layer helps to detect small differences — good for single-step forecast,
not appropriate for long-term forecast.

0 The LSTM is able to capture pattern and is not affecting by the window size.

0 A CNN-LSTM combined model overcomes CNN limitations in terms of long
temporal dependencies and achieves optimal forecast performance. It can better
predict minor irregularities — more sensitive to short-term increases in traffic.

0 The Conv-LSTM model is less sensitive to rapid changes, therefore, compared to
CNN-LSTM, The Conv-LSTM is worse at detecting small transfers.

We consider CNN-LSTM as the best model for transfer prediction and Conv-LSTM as
the most suitable model to predict the transfer end. Conv-LSTMs exhibit a slower
reaction to drops, therefore, can prevent multiple reconfiguration of the network during
a short period of time.
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Network traffic forecasting models
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Network traffic forecasting models

0 Seq2Seq: simpler, the encoder processes the input sequence and converts it into a
single fixed-length context vector — struggles with long sequences.

0 Seq2Seq with attention mechanism: allows the decoder to access different parts
of the input sequence at each step rather than relying on the fixed-length context
vector — handle long sequences but increases complexity and computational time.

0 Autoencoder: encodes the input data into a lower-dimensional latent space, it can
be trained with historical data — map past data to future predictions.

0 Transformer: encoder with selft-attention mechanism, enables parallelization —
speeds up training and inference, computationally expensive.
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Results

Algorithm RMSE o(RMSE) CPU Time
Seq2Seq Encoder-Decoder model 5.783  0.141 0.9779 1min 54s
Seq2Seq Encoder-Decoder model with AM  5.740  0.106 0.9780 1min 59s
Autoencoder 11.609 0.034 0.9044 1min 57s
Transformer (Encoder-Only) 5.904  0.242 0.9782 7min 37s
Transformer (Encoder-Decoder) 11.775 0.321 09012 11lmin 19s
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Conclusions and future work

Conclusions:

0 We demonstrated that NOTED can reduce duration of large data transfers and improve
the efficient use of network resources with production FTS transfers.

0 NOTED makes decisions by watching and understanding the behaviour of transfer
services — do not need any modification to work with NOTED.

0 NOTED may be useful for HL-LHC, if the network bandwidth becomes a limiting factor.
0 We currently work with FTS, but if there are other transfer services interested, NOTED
could be adapted to them.
Future work:

0 Evaluate whether training a single link would perform well on another link — if not,
define a training strategy.

0 Would it be possible to identify/classify traffic based on historical data and anticipate
actions on the network?
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Thanks for your attention!
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