

Towards an Introspective Dynamic Model of Globally Distributed Computing Infrastructures

Yihui Ren¹, Ozgur Kilic¹, David Park¹, Tatiana Korchuganova⁶, Frederic Suter², Joseph Boudreau⁶, Norbert Podhorszki², Paul Nilsson¹, Sairam Sri Vatsavai¹, Scott Klasky, Shengyu Feng⁵, Tasnuva Chowdhury⁷, Varena Ingrid Martinez Outschoorn⁴, Yiming Yang⁵, Tadashi Maeno¹, Alexei Klimentov¹, Adolfy Hoisie¹

¹Brookhaven National Laboratory, Upton, NY; ²Oak Ridge National Laboratory, Oak Ridge, TN; ³SLAC National Accelerator Laboratory, Menlo Park, CA; ⁴University of Massachusetts at Amherst, Amherst, MA; ⁵Carnegie Mellon University, Pittsburgh, PA; ⁶University of Pittsburgh, Pittsburgh, PA

CHEP 2024 Track 7 | Presenter: David Park

TLAS Shut down

Run 1

2010

Data taking

2012

2014

Project Goals and Organization

Distributed computing sites of global scientific collaborations

Worldwide LHC Computing Grid

42 countries

nnkhaven ational Laboratory

Motivation: Extreme large data volumes and \bigcirc increasingly complex computation workflows in many scientific domains

2016

2018

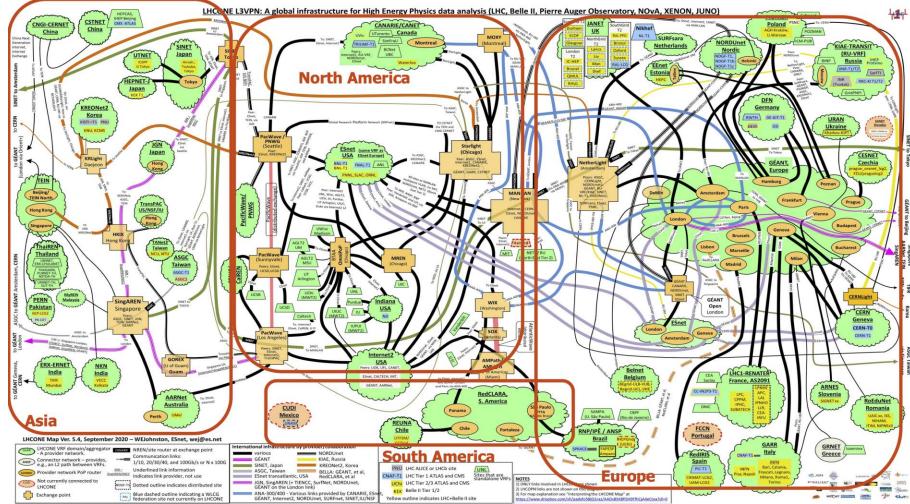
2020

Run 2

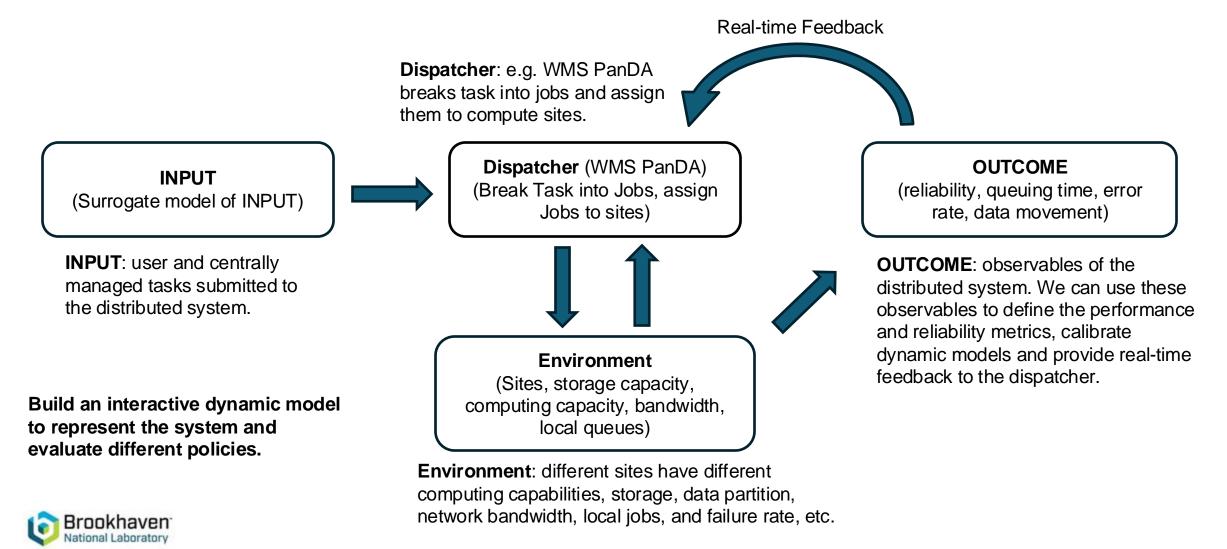
CAK RIDGE

Goal: Optimal data placement and workload Ο scheduling enhancing the resilience, throughput, and resource utilization.

Run 3

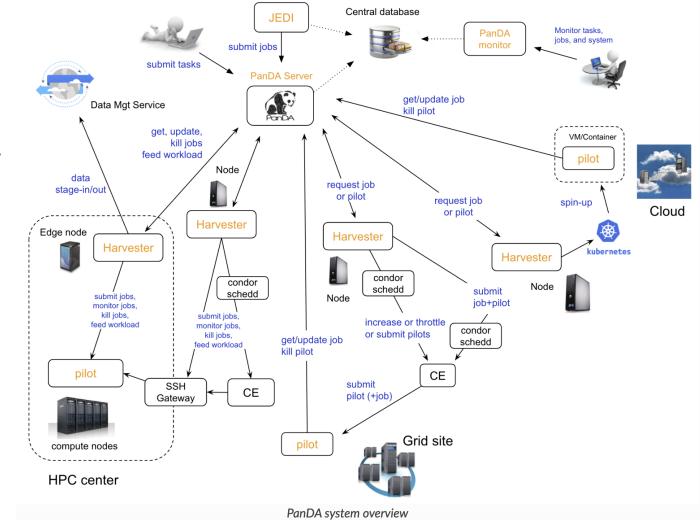

July 10th, 2024: 1.001 ExaByte

2022


2024 Year

World Nuclear and Particle Physics Research Network

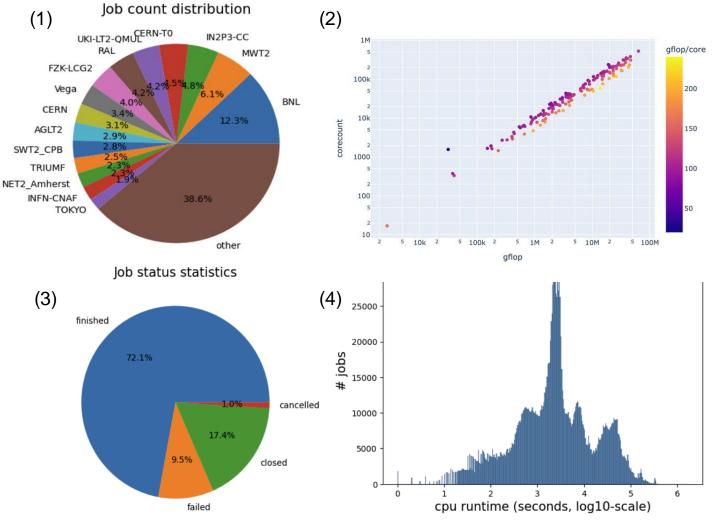
WAN connectivity increased x10 in 10 years. This shows a Virtual Private Network (LHCONE) spanning150 sites in ~40 countries on all continents but Antarctica, and its bandwidth is dedicated to High Energy Physics.


Four Interacting Components of the Dynamic Model

Production and Distributed Analysis (PanDA)

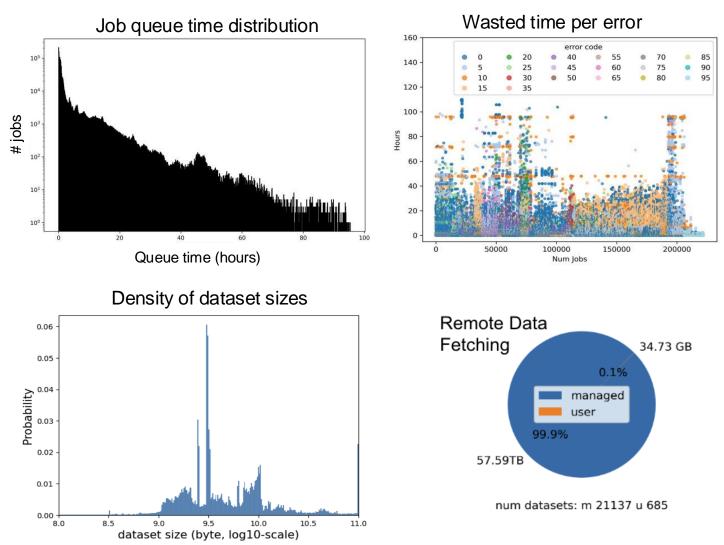
- The PanDA system has been developed by ATLAS since the summer of 2005 to address the experiment's need for a data-driven workload management solution capable of handling both production and distributed analysis at the scale required for LHC data processing.
- Workflow: a group of tasks; Task: a group of jobs
- A job runs on a slot in computing resource to process a subset of input and produce a subset of output.
- Note: "task" in some other systems means "job" in our terminologies

[PanDA] T. Maeno et al., "PanDA: Production and Distributed Analysis System," Comput. Softw. Big Sci., vol. 8, no. 1, p. 4, 2024.

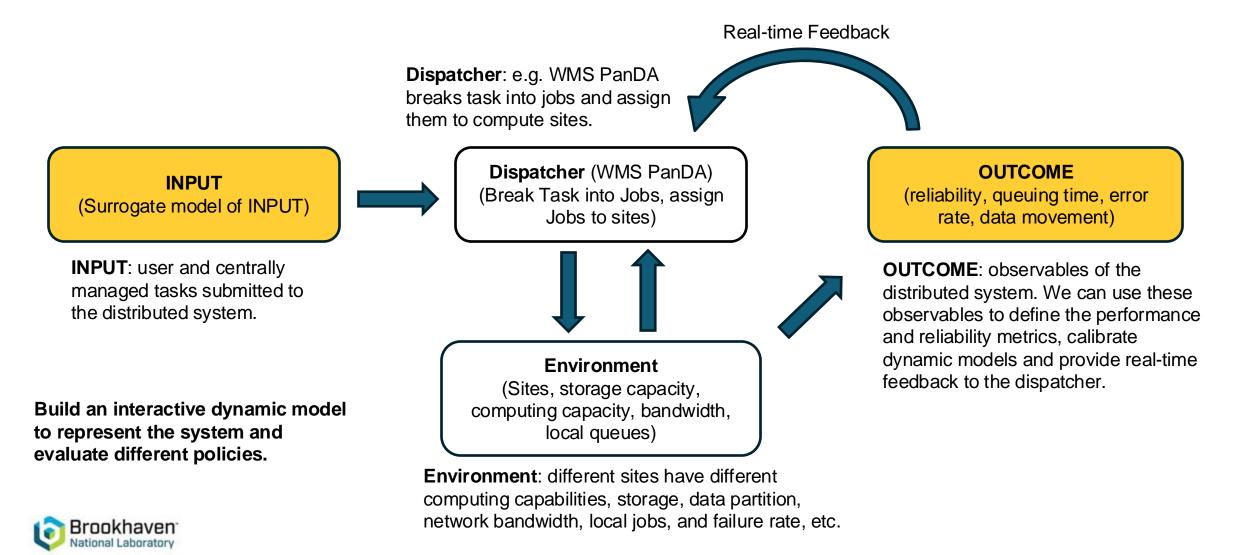

Production and Distributed Analysis (PanDA)

Dataset statistics

Time span: 150 days (Jan 1, 2024 – June 1, 2024) Number of user jobs: 2,352,392 Number of unique columns: 131 Number of unique tasks: 10990


- (Fig. 1) User jobs are distributed in multiple computing sites
- (Fig. 2) Computing sites show varying sums of FLOPs
- (Fig. 3) Most jobs finish successfully while some others fail.
- (Fig. 4) Median job takes 3100 CPU seconds.

Identification of key introspective metrics


Identified several introspective measures for resiliency

- Job queue time
- Wasted time due to errors
- Dataset sizes and movement

Four Interacting Components of the Dynamic Model

Representative features for surrogate modeling [1]

• Preprocessing pipeline (b) and preprocessed data samples (a).

	(a)							(b)	Time span: Jan 1, 2024 – June 1, 2024			
	creation time	computing site	DAOD dataset features								PanDA records	
_			project	prod step	data type	nfiles	size	- status	workload	← → Remaining > Filtered out	(# jobs = 2,352,392)	
type	N	С	С	С	С	Ν	N	С	N	↓		
# unique	N/A	83	14	4	54	N/A	N/A	4	N/A	jobs running without dataset (# jobs = 339,103)	jobs using a dataset (# jobs = 1,938,160)	
1	2024-03-24 21:09:26	ANALY_BNL_VP	data16_ 13TeV	deriv	PHYS	10.0	1.86e+10	finished	620760.0		- → non-DAOD (925,252)	
samples	2024-02-18 23:37:50	SWT2_CPB	mc21_1 3p6TeV	deriv	PHYS	3.0	1.66e+10	finished	303960.0		DAOD dataset	
	2024-04-22 08:57:48	CERN	mc21_1 3p6TeV	deriv	PHYS	1.0	3.49e+09	failed	3300.0		(# jobs = 1,012,908)	
	2024-03-24 17:48:13	BNL	mc20_1 3TeV	deriv	EGAM1	8.0	5.22e+10	finished	7010880.0	training set (80%)	test set (20%)	
	2024-01-07 09:39:54	ANALY_ARNES_ DIRECT	data18_ 13TeV	deriv	PHYS	1.0	2.59e+09	finished	45000.0	(# jobs =1,081,608)	(# jobs = 270403)	

[1] Park, David K., et al. "AI Surrogate Model for Distributed Computing Workloads." arXiv preprint

Generative Models for Tabular Data

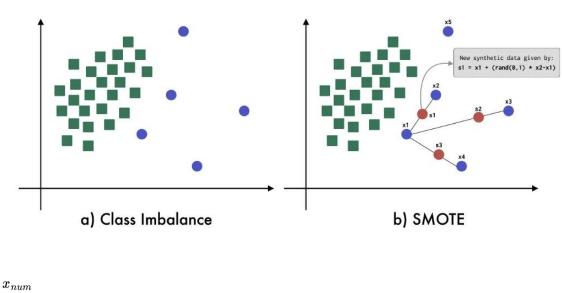
Number of data – Train: 1,343,792 (60%) / validation: 447,931 (20%) / test: 447,931 (20%)

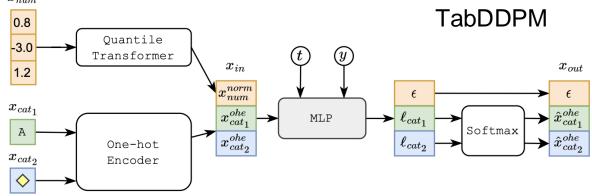
creationdate	computingsite	workload	jobstatus		creationdate	computingsite	workload	jobstatu
2024-03-11 08:43:26	TRIUMF	244150.0	finished		1.710744e+09	IN2P3-LAPP	4.775945e+04	finishe
2024-02-12 06:51:24	AGLT2	0.0	closed		1.710744e+09	TRIUMF	1.661405e+04	finished
2024-02-11 11:42:23	BNL	351720.0	finished		1.711332e+09	CERN	2.614423e+03	finished
2024-03-17 22:52:56	ТОКҮО	5460.0	failed		1.714942e+09	SWT2_CPB	6.659398e+03	finished
2024-01-21 18:17:05	ANALY_ARNES_DIRECT	1173400.0	finished		1.713719e+09	TRIUMF	1.020332e+05	finished
2024-05-05 20:15:07	SWT2_CPB	263880.0	finished	Model				
2024-02-05 08:44:23		122220.0	finished		1.713725e+09	NSC	8.748761e+05	finished
	praguelcg2				1.714943e+09	SWT2_CPB	3.329313e+06	finished
2024-05-27 08:21:09	FZK-LCG2	185640.0	failed		1.708938e+09	SWT2_CPB	1.212568e+03	finished
2024-03-24 15:59:45	UKI-NORTHGRID-MAN-HEP	436920.0	finished		1.708937e+09	CERN-T0	0.000000e+00	closed
2024-04-29 03:11:47	INFN-LECCE	182300.0	finished		1.714940e+09	BNL	4.665673e+03	failed

Samples of training data

synthetic data

Baselines: tabular generative models

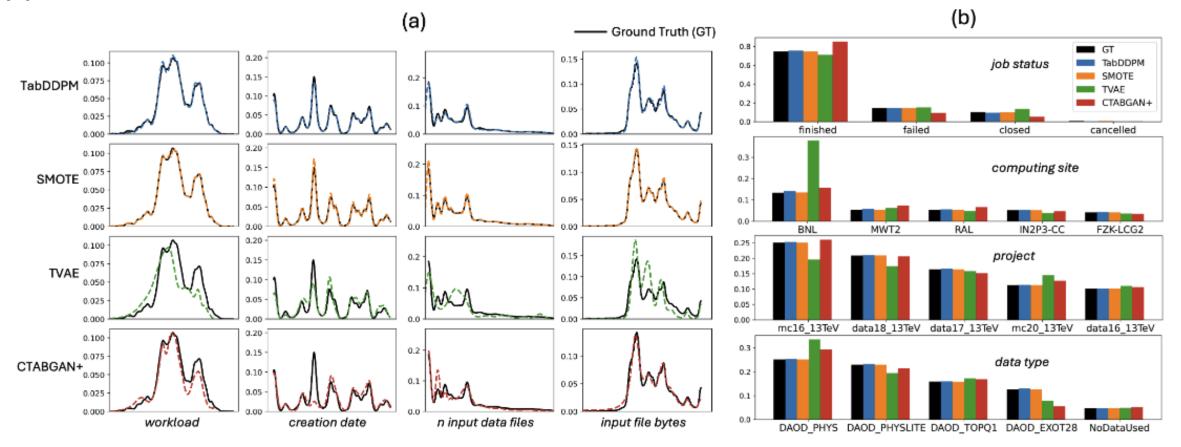

SMOTE


SMOTE: Non-DL algorithm working based on nearest neighbor.

TVAE: Variational autoencoder as backbone

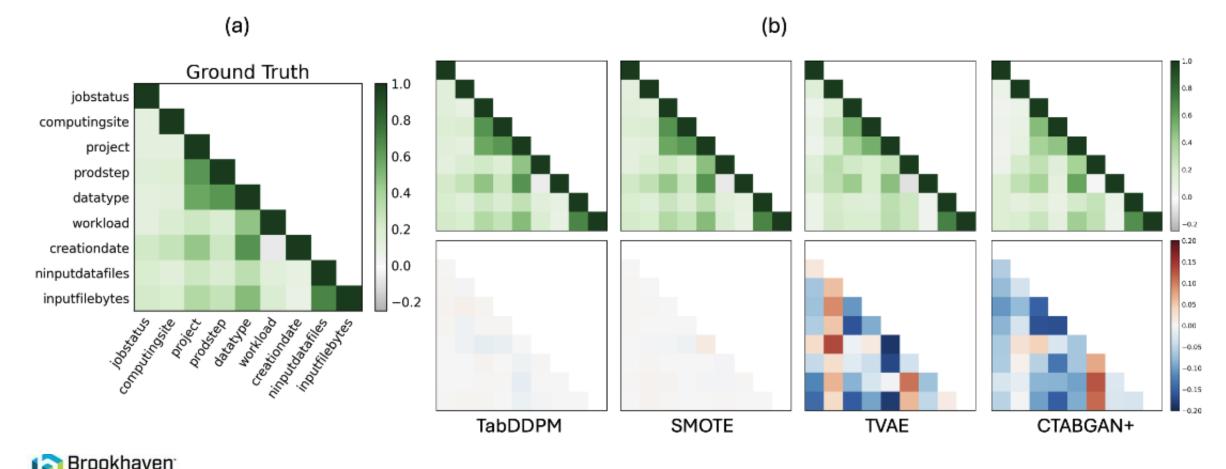
CTABGAN+: best tabular model with generative adversarial networks

TabDDPM: Diffusion model backbone



Measuring Generative Performances: Results

(1) Per-feature evaluation

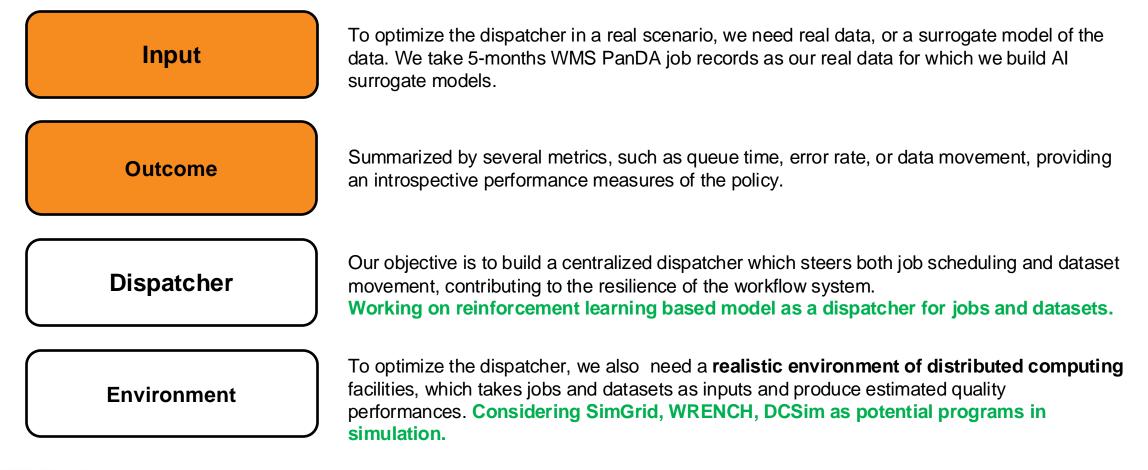


Measuring Generative Performances: Results

(2) Correlations between feature pairs

National Laboratory

Measuring Generative Performances: Results


(3) Minimizing privacy risk: distance to closest record (DCR)

WD \downarrow	JSD \downarrow	diff- CORR↓	DCR ↑	diff- MLEF↓
0.961 1.0 0.871 <u>0.874</u>	0.806 0.820 0.799 0.799	0.653 0.658 0.011 <u>0.036</u>	0.143 <u>0.105</u> 0.001 0.025	5.875 10.464 0.058 <u>0.826</u>
	0.961 1.0 0.871	0.961 0.806 1.0 0.820 0.871 0.799	WD \downarrow JSD \downarrow CORR \downarrow 0.961 0.806 0.653 1.0 0.820 0.658 0.871 0.799 0.011	WD \downarrow JSD \downarrow CORR \downarrow DCR \uparrow 0.961 0.806 0.653 0.143 1.0 0.820 0.658 <u>0.105</u> 0.871 0.799 0.011 0.001

TABLE I PERFORMANCE COMPARISONS ON SURROGATE MODELS.

Implementation overview

Conclusion

- Curated and analyzed 150-day WMS PanDA records.
- Identified key performance metrics and representative columns.

[1] Park, David K., et al. "Al Surrogate Model for Distributed Computing Workloads." arXiv preprint

- Built AI surrogate model for the PanDA records [1]. The surrogate model successfully learns the joint distribution of WMS PanDA table as well as the time dynamics.
- Future work includes incorporating more diverse features of PanDA, developing simulated distributed computing environment, and a dispatcher optimized for resiliency.

