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Overview & Motivation

Introduction
• The CMSWEB infrastructure hosts critical web services 

like DBS, DAS, CRAB, WMCore, DQM and more.

• Built on Kubernetes (k8s), powering over two dozen 
distinct web services vital for CMS operations.

• Any irregularities or performance degradation can 
significantly impact CMS services and operations.
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Objective
• R&D for machine/deep learning algorithms for anomaly detection
• Develop a machine-learning base application to continuously monitor CMSWEB services, detecting and addressing 

anomalies that indicate performance issues or security threats

• Leverage machine/deep learning techniques to monitor key service parameters, identifying deviations from expected 
behavior.

Key Functionality
▪ Anomaly Detection & Alerting: 

• Once an anomaly is detected, the system generates 
real-time alerts and routes them to relevant service 
developers, ensuring rapid response and issue resolution.

▪ Impact: 

• Proactively fortifies the reliability and security of the 
CMSWEB cluster, reducing downtime and improving 
system stability.
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Data Collection

• Objective: 
Extract critical metrics from services hosted on 
CMSWEB for anomaly detection.
• Source: 
Data is collected from CMS Monit 
Infrastructure using PromQL
• Target Services: 
Monitored services include DBS, DAS, CRAB, 
WMarchive, and WMCore etc.
• Metrics:

• CPU
• Memory
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• Prometheus queries are dynamically generated for 
each service, namespace, and container.

• Time intervals:
• Initial run uses a 30-day history.
• Continuous training runs every 2 hours.

Process
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Data Processing and Storage

Data Processing:
• Prometheus data is processed to filter out irrelevant 

results.

• Data is cleaned and aggregated by timestamp, taking the 
mean value for each interval.

Memory Management for limited resources:

• Memory usage is logged at multiple stages.

• Garbage collection is explicitly called to manage large 
datasets.

Data Storage:

• Processed data is saved to CSV files for later use in 
machine learning model training.

• Results are continuously appended, ensuring up-to-date 
data for real-time anomaly detection.
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Start Script

Config.json

Query 
Generation

Prometheus API

result.json

Data 
preprocessing

result.csv
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Datasets Overview

Namespace Containers
crab crabserver
das das-server
dbs dbs2go-global-r
dmwm reqmgr2
dqm autodqm
wma wmarchive
ruciocm monitor
dmwm workqueue
tzero t0wmadatasvc
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Namespace & Container Metrics

Name
eagle_pod_container_resource_usage_memory_by
tes
eagle_pod_container_resource_usage_cpu_cores
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Models Overview

• All models are designed using Autoencoder architecture to 
detect anomalies by learning data reconstruction patterns.

• Autoencoders are used to identify deviations by comparing 
input data to its reconstruction.
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Key Points

1. CNN Autoencoder: Extracts spatial features from input 
data using convolutional layers.

2. LSTM Autoencoder: Captures long-term dependencies 
and temporal patterns in sequential data.

3. GRU Autoencoder: A simplified version of LSTM with 
fewer parameters, designed for faster training while 
preserving temporal patterns.

Model Implemented

4. Fully-Connected Autoencoder: Uses dense layers for a 
basic autoencoder architecture to model general patterns.

5. Hybrid CNN-LSTM Autoencoder: Combines 
convolutional layers for spatial feature extraction with 
LSTM layers for temporal analysis, offering enhanced 
performance for time-series data.

6. Hybrid CNN-GRU Autoencoder: Merges CNN for feature 
extraction and GRU for sequence learning, offering a 
balance between performance and efficiency.
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Models Implementation

Data Loading: 
● CSV files containing metrics are loaded

Normalization: 

● Data is normalized to a range suitable for model input

Sequence Generation: 

● Sequences are created from the data for training and 
testing. 
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Data Handling

Anomaly Detection Process
Isolation Forest:

● Applied to detect and filter anomalies in the dataset 
before training.

● Masks anomalies for subsequent model training.
Model Training:

● Callbacks: Implements EarlyStopping and 
ModelCheckpoint for better training performance.

Evaluation Metrics
Performance Metrics:

● Mean Absolute Error (MAE)
● Root Mean Squared Error (RMSE)
● Mean Absolute Squared Error (MASE)
● R² Score

Visualization:
● Plots of reconstruction errors to assess model 

performance and detect anomalies.

Implementation of Continuous Training: 
● Allows the model to adapt to new data patterns 

without manual intervention.
Real-Time Monitoring: 

● Regular checks for new data and updates to the 
training process.

Continuous Training and Monitoring
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Model Evaluation – Training Data - Error Metrics
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Model Evaluation Metrics
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Thresholds

1. Mean + k * Standard Deviation

Formula: 
threshold_mean_std=avg_reconstruction_error_train+
k×std(reconstruction_error_train)

Description:  Establishes a threshold based on the 
average reconstruction error and its variability, scaled 
by a factor k.

2. Median Absolute Deviation (MAD)

Formula:

threshold_mad=median(reconstruction_error_train)+k
×mad

Description: Focuses on the robustness of the 
median and its variability, providing a threshold 
based on the dispersion of reconstruction errors.

1. 95th Percentile

Formula: 

threshold_95th_percentile=percentile(reconstruction_
error_train,95)

Description: Represents the value below which 95% 
of the reconstruction errors fall, marking a high 
anomaly threshold.

2. 99th Percentile

Formula:

threshold_99th_percentile=percentile(reconstruction_
error_train,99)

Description: Indicates a more stringent threshold for 
anomaly detection, capturing only the top 1% of 
reconstruction errors.



Muhammad Imran, et al, CHEP 2024, 19-25 Oct, Krakow, Poland

Model Evaluation – Test - %age Above Thresholds 

Memory Datasets CPU Datasets
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Model Evaluation – Test - Mean Above Thresholds 

Memory Datasets CPU Datasets
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Model Evaluation – Training & Inference Time

Memory Datasets CPU Datasets
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Hyperparameter Tuning Overview
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Search Strategy:
Implement a search strategy, such as:

•Random Search for efficient exploration of the hyperparameter space.

Callbacks:
Use callbacks for model training:

•EarlyStopping: Monitors validation loss to prevent overfitting.
•ModelCheckpoint: Saves the best model based on validation loss.

Tuning Execution:
•Initialize a tuner (e.g., Keras Tuner) with:

•Maximum trials for hyperparameter combinations.
•Number of executions per trial for robustness.
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Hyperparameter Tuning Comparison
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Live Anomaly Detection

• Dynamically adjust thresholds over time to improve 
anomaly detection accuracy as data evolves.
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Objective

•Adaptive Thresholds continuously 
update based on:

1. Historical Thresholds: Derived 
from previous data.

2. Recent Data: Latest training 
results and reconstruction errors.

3. Time Decay: Older thresholds are 
given less importance over time.

Outcome:
Real-time adaptation of thresholds improves detection of evolving anomalies, 
making the system more responsive to changes in data.
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Application Development
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Welcome Page: https://cmsweb-anomaly-detection.app.cern.ch

https://cmsweb-anomaly-detection.app.cern.ch
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Application: Training
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https://cmsweb-anomaly-detection.app.cern.ch/train/

● It is used to train various applications by 
selecting various filters

https://cmsweb-anomaly-detection.app.cern.ch/train/
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Application: Monitoring
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https://cmsweb-anomaly-detection.app.cern.ch/monitor/

● It is used to monitor various applications by 
selecting various filters

https://cmsweb-anomaly-detection.app.cern.ch/monitor/
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Deployment 

20

CERN Platform as a service (Paas)
● Deployment is done on CERN Openshift Infrastructure.
● CERN SSO to authentication
● Nginx Proxy to provide role based access based on egroups  
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Alert Mechanism
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● Alerts are generated using amtool in CMS Monit Infrastructures based on rules

● Email is also sent to receiver set for particular tag
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Conclusion & Future Work

● Performed R&D for anomaly detection for 
web services deployed in CMSWEB services.

● Data extraction from CMS Monit 
Infrastructure 

● Implemented various machine learning 
algorithms and monitored performance 
against various applications.

● Performed hyper parameter tuning
● Development of App to train app and detect 

anomalies and generate alerts
● Deployment on Openshift platform.

● Improvement in monitoring dashboard
● Including more anomalies insight like count 

of anomalous points at certain timestamps 
for more effective decision making.

● Allow users to directly interact with the 
model such as allowing them to set certain 
parameters for model training

● Create a summarized dashboard about 
applications that are in training and those 
that need to be trained and their status.

● Allow the user to stop the currently running 
model.

● Implement an expert feedback loop that will 
be used to ignore the anomalous point in 
the next round of model training.

Conclusion Future Work
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Model Evaluation Metrics
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Evaluation Metrics

1. Root Mean Squared Error (RMSE)
● Measures the square root of the average squared 

differences between predicted and actual values.

● Interpretation: Lower RMSE indicates better fit, 
as it reflects how close predictions are to actual 
data points.

2. Mean Absolute Error (MAE)
● Represents the average absolute differences 

between predicted and actual values.

● Interpretation: Lower MAE signifies better 
predictive accuracy, indicating smaller errors 
between predicted and actual values.

3. Mean Absolute Scaled Error (MASE)
● Scales the MAE relative to the MAE of a naïve baseline 

model.

● Interpretation: MASE < 1 indicates that the model 
performs better than the baseline; MASE > 1 indicates 
worse performance.

4. R-squared (R²)
● The proportion of the variance in the dependent variable 

that is predictable from the independent variables.

● Interpretation: R² ranges from 0 to 1, where values 
closer to 1 indicate a better fit of the model to the data.
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Hyperparameter Tuning Overview

• Optimize model performance by selecting the best 
hyperparameters through systematic search.
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Objective

Model Definition:
Use a flexible model architecture (e.g., 
Hybrid CNN-LSTM) that allows tuning of 
various hyperparameters such as:

• Number of filters in CNN layers.
• Kernel size for convolution operations.
• Number of units in LSTM layers.
• Dropout rates for regularization.
• Choice of optimizer (e.g., Adam, 

RMSprop).

Hyperparameter Space:
Define a range for each 
hyperparameter:

• Filters: [64, 128, 192, 256]
• Kernel Size: [2, 3, 4, 5]
• LSTM Units: [64, 128, 192, 

256]
• Dropout Rate: [0.1, 0.2, 0.3, 

0.4, 0.5]


