
Development of Machine-learning based App for
Anomaly Detection in CMSWEB

Nasir Hussain1, Amna Muzaffar2, Muhammad Imran3, Andreas Pfeiffer1, Aroosha Pervaiz1

and Valentin Kuznetsov4 for CMS Collaboration

1CERN, Geneva, Switzerland
2Quaid-i-Azam University, Islamabad Pakistan

3National Centre for Physics, Islamabad Pakistan
4Cornell University, New York, USA

Email: muhammad.imran@cern.ch

mailto:muhammad.imran@cern.ch

Muhammad Imran, et al, CHEP 2024, 19-25 Oct, Krakow, Poland

Agenda
• Overview & Motivation
• Data Collection

• Data Processing and Storage
• Datasets Overview

• Machine learning Models
• Models Overview
• Models Implementation
• Models Evaluation Metrics

• Hyperparameter Tuning
• Overview
• Comparison

• Live Anomaly Detection
• Application Development

• Training
• Monitoring

• Application Deployment
• Alert Mechanism
• Conclusion & Future Work

Muhammad Imran, et al, CHEP 2024, 19-25 Oct, Krakow, Poland

Overview & Motivation

Introduction
• The CMSWEB infrastructure hosts critical web services

like DBS, DAS, CRAB, WMCore, DQM and more.

• Built on Kubernetes (k8s), powering over two dozen
distinct web services vital for CMS operations.

• Any irregularities or performance degradation can
significantly impact CMS services and operations.

3

Objective
• R&D for machine/deep learning algorithms for anomaly detection
• Develop a machine-learning base application to continuously monitor CMSWEB services, detecting and addressing

anomalies that indicate performance issues or security threats

• Leverage machine/deep learning techniques to monitor key service parameters, identifying deviations from expected
behavior.

Key Functionality
▪ Anomaly Detection & Alerting:

• Once an anomaly is detected, the system generates
real-time alerts and routes them to relevant service
developers, ensuring rapid response and issue resolution.

▪ Impact:

• Proactively fortifies the reliability and security of the
CMSWEB cluster, reducing downtime and improving
system stability.

Muhammad Imran, et al, CHEP 2024, 19-25 Oct, Krakow, Poland

Data Collection

• Objective:
Extract critical metrics from services hosted on
CMSWEB for anomaly detection.
• Source:
Data is collected from CMS Monit
Infrastructure using PromQL
• Target Services:
Monitored services include DBS, DAS, CRAB,
WMarchive, and WMCore etc.
• Metrics:

• CPU
• Memory

4

• Prometheus queries are dynamically generated for
each service, namespace, and container.

• Time intervals:
• Initial run uses a 30-day history.
• Continuous training runs every 2 hours.

Process

Muhammad Imran, et al, CHEP 2024, 19-25 Oct, Krakow, Poland

Data Processing and Storage

Data Processing:
• Prometheus data is processed to filter out irrelevant

results.

• Data is cleaned and aggregated by timestamp, taking the
mean value for each interval.

Memory Management for limited resources:

• Memory usage is logged at multiple stages.

• Garbage collection is explicitly called to manage large
datasets.

Data Storage:

• Processed data is saved to CSV files for later use in
machine learning model training.

• Results are continuously appended, ensuring up-to-date
data for real-time anomaly detection.

5

Start Script

Config.json

Query
Generation

Prometheus API

result.json

Data
preprocessing

result.csv

Muhammad Imran, et al, CHEP 2024, 19-25 Oct, Krakow, Poland

Datasets Overview

Namespace Containers
crab crabserver
das das-server
dbs dbs2go-global-r
dmwm reqmgr2
dqm autodqm
wma wmarchive
ruciocm monitor
dmwm workqueue
tzero t0wmadatasvc

6

Namespace & Container Metrics

Name
eagle_pod_container_resource_usage_memory_by
tes
eagle_pod_container_resource_usage_cpu_cores

Muhammad Imran, et al, CHEP 2024, 19-25 Oct, Krakow, Poland

Models Overview

• All models are designed using Autoencoder architecture to
detect anomalies by learning data reconstruction patterns.

• Autoencoders are used to identify deviations by comparing
input data to its reconstruction.

7

Key Points

1. CNN Autoencoder: Extracts spatial features from input
data using convolutional layers.

2. LSTM Autoencoder: Captures long-term dependencies
and temporal patterns in sequential data.

3. GRU Autoencoder: A simplified version of LSTM with
fewer parameters, designed for faster training while
preserving temporal patterns.

Model Implemented

4. Fully-Connected Autoencoder: Uses dense layers for a
basic autoencoder architecture to model general patterns.

5. Hybrid CNN-LSTM Autoencoder: Combines
convolutional layers for spatial feature extraction with
LSTM layers for temporal analysis, offering enhanced
performance for time-series data.

6. Hybrid CNN-GRU Autoencoder: Merges CNN for feature
extraction and GRU for sequence learning, offering a
balance between performance and efficiency.

Muhammad Imran, et al, CHEP 2024, 19-25 Oct, Krakow, Poland

Models Implementation

Data Loading:
● CSV files containing metrics are loaded

Normalization:

● Data is normalized to a range suitable for model input

Sequence Generation:

● Sequences are created from the data for training and
testing.

8

Data Handling

Anomaly Detection Process
Isolation Forest:

● Applied to detect and filter anomalies in the dataset
before training.

● Masks anomalies for subsequent model training.
Model Training:

● Callbacks: Implements EarlyStopping and
ModelCheckpoint for better training performance.

Evaluation Metrics
Performance Metrics:

● Mean Absolute Error (MAE)
● Root Mean Squared Error (RMSE)
● Mean Absolute Squared Error (MASE)
● R² Score

Visualization:
● Plots of reconstruction errors to assess model

performance and detect anomalies.

Implementation of Continuous Training:
● Allows the model to adapt to new data patterns

without manual intervention.
Real-Time Monitoring:

● Regular checks for new data and updates to the
training process.

Continuous Training and Monitoring

Muhammad Imran, et al, CHEP 2024, 19-25 Oct, Krakow, Poland

Model Evaluation – Training Data - Error Metrics

9

Muhammad Imran, et al, CHEP 2024, 19-25 Oct, Krakow, Poland

Model Evaluation Metrics

10

Thresholds

1. Mean + k * Standard Deviation

Formula:
threshold_mean_std=avg_reconstruction_error_train+
k×std(reconstruction_error_train)

Description: Establishes a threshold based on the
average reconstruction error and its variability, scaled
by a factor k.

2. Median Absolute Deviation (MAD)

Formula:

threshold_mad=median(reconstruction_error_train)+k
×mad

Description: Focuses on the robustness of the
median and its variability, providing a threshold
based on the dispersion of reconstruction errors.

1. 95th Percentile

Formula:

threshold_95th_percentile=percentile(reconstruction_
error_train,95)

Description: Represents the value below which 95%
of the reconstruction errors fall, marking a high
anomaly threshold.

2. 99th Percentile

Formula:

threshold_99th_percentile=percentile(reconstruction_
error_train,99)

Description: Indicates a more stringent threshold for
anomaly detection, capturing only the top 1% of
reconstruction errors.

Muhammad Imran, et al, CHEP 2024, 19-25 Oct, Krakow, Poland

Model Evaluation – Test - %age Above Thresholds

Memory Datasets CPU Datasets

11

Muhammad Imran, et al, CHEP 2024, 19-25 Oct, Krakow, Poland

Model Evaluation – Test - Mean Above Thresholds

Memory Datasets CPU Datasets

12

Muhammad Imran, et al, CHEP 2024, 19-25 Oct, Krakow, Poland

Model Evaluation – Training & Inference Time

Memory Datasets CPU Datasets

13

Muhammad Imran, et al, CHEP 2024, 19-25 Oct, Krakow, Poland

Hyperparameter Tuning Overview

14

Search Strategy:
Implement a search strategy, such as:

•Random Search for efficient exploration of the hyperparameter space.

Callbacks:
Use callbacks for model training:

•EarlyStopping: Monitors validation loss to prevent overfitting.
•ModelCheckpoint: Saves the best model based on validation loss.

Tuning Execution:
•Initialize a tuner (e.g., Keras Tuner) with:

•Maximum trials for hyperparameter combinations.
•Number of executions per trial for robustness.

Muhammad Imran, et al, CHEP 2024, 19-25 Oct, Krakow, Poland

Hyperparameter Tuning Comparison

15

Muhammad Imran, et al, CHEP 2024, 19-25 Oct, Krakow, Poland

Live Anomaly Detection

• Dynamically adjust thresholds over time to improve
anomaly detection accuracy as data evolves.

16

Objective

•Adaptive Thresholds continuously
update based on:

1. Historical Thresholds: Derived
from previous data.

2. Recent Data: Latest training
results and reconstruction errors.

3. Time Decay: Older thresholds are
given less importance over time.

Outcome:
Real-time adaptation of thresholds improves detection of evolving anomalies,
making the system more responsive to changes in data.

Muhammad Imran, et al, CHEP 2024, 19-25 Oct, Krakow, Poland

Application Development

17

Welcome Page: https://cmsweb-anomaly-detection.app.cern.ch

https://cmsweb-anomaly-detection.app.cern.ch

Muhammad Imran, et al, CHEP 2024, 19-25 Oct, Krakow, Poland

Application: Training

18

https://cmsweb-anomaly-detection.app.cern.ch/train/

● It is used to train various applications by
selecting various filters

https://cmsweb-anomaly-detection.app.cern.ch/train/

Muhammad Imran, et al, CHEP 2024, 19-25 Oct, Krakow, Poland

Application: Monitoring

19

https://cmsweb-anomaly-detection.app.cern.ch/monitor/

● It is used to monitor various applications by
selecting various filters

https://cmsweb-anomaly-detection.app.cern.ch/monitor/

Muhammad Imran, et al, CHEP 2024, 19-25 Oct, Krakow, Poland

Deployment

20

CERN Platform as a service (Paas)
● Deployment is done on CERN Openshift Infrastructure.
● CERN SSO to authentication
● Nginx Proxy to provide role based access based on egroups

Muhammad Imran, et al, CHEP 2024, 19-25 Oct, Krakow, Poland

Alert Mechanism

21

● Alerts are generated using amtool in CMS Monit Infrastructures based on rules

● Email is also sent to receiver set for particular tag

Muhammad Imran, et al, CHEP 2024, 19-25 Oct, Krakow, Poland

Conclusion & Future Work

● Performed R&D for anomaly detection for
web services deployed in CMSWEB services.

● Data extraction from CMS Monit
Infrastructure

● Implemented various machine learning
algorithms and monitored performance
against various applications.

● Performed hyper parameter tuning
● Development of App to train app and detect

anomalies and generate alerts
● Deployment on Openshift platform.

● Improvement in monitoring dashboard
● Including more anomalies insight like count

of anomalous points at certain timestamps
for more effective decision making.

● Allow users to directly interact with the
model such as allowing them to set certain
parameters for model training

● Create a summarized dashboard about
applications that are in training and those
that need to be trained and their status.

● Allow the user to stop the currently running
model.

● Implement an expert feedback loop that will
be used to ignore the anomalous point in
the next round of model training.

Conclusion Future Work

Thank You.
Q/A

Backup slides

Muhammad Imran, et al, CHEP 2024, 19-25 Oct, Krakow, Poland

Model Evaluation Metrics

25

Evaluation Metrics

1. Root Mean Squared Error (RMSE)
● Measures the square root of the average squared

differences between predicted and actual values.

● Interpretation: Lower RMSE indicates better fit,
as it reflects how close predictions are to actual
data points.

2. Mean Absolute Error (MAE)
● Represents the average absolute differences

between predicted and actual values.

● Interpretation: Lower MAE signifies better
predictive accuracy, indicating smaller errors
between predicted and actual values.

3. Mean Absolute Scaled Error (MASE)
● Scales the MAE relative to the MAE of a naïve baseline

model.

● Interpretation: MASE < 1 indicates that the model
performs better than the baseline; MASE > 1 indicates
worse performance.

4. R-squared (R²)
● The proportion of the variance in the dependent variable

that is predictable from the independent variables.

● Interpretation: R² ranges from 0 to 1, where values
closer to 1 indicate a better fit of the model to the data.

Muhammad Imran, et al, CHEP 2024, 19-25 Oct, Krakow, Poland

Hyperparameter Tuning Overview

• Optimize model performance by selecting the best
hyperparameters through systematic search.

26

Objective

Model Definition:
Use a flexible model architecture (e.g.,
Hybrid CNN-LSTM) that allows tuning of
various hyperparameters such as:

• Number of filters in CNN layers.
• Kernel size for convolution operations.
• Number of units in LSTM layers.
• Dropout rates for regularization.
• Choice of optimizer (e.g., Adam,

RMSprop).

Hyperparameter Space:
Define a range for each
hyperparameter:

• Filters: [64, 128, 192, 256]
• Kernel Size: [2, 3, 4, 5]
• LSTM Units: [64, 128, 192,

256]
• Dropout Rate: [0.1, 0.2, 0.3,

0.4, 0.5]

